Article thumbnail

The Modelling of Axially Translating Flexible Beams

By RJ Theodore, JH Arakeri and A Ghosal


The axially translating flexible beam with a prismatic joint can be modelled by using the Euler-Bernoulli beam equation together with the convective terms. In general, the method of separation of variables cannot be applied to solve this partial differential equation.In this paper, a non-dimensional form of the Euler-Bernoulli beam equation is presented, obtained by using the concept of group velocity, and also the conditions under which separation of variables and assumed modes method can be used. The use of clamped-mass boundary conditions leads to a time-dependent frequency equation for the translating flexible beam. A novel method is presented for solving this time-dependent frequency equation by using a differential form of the frequency equation. The assumed mode/Lagrangian formulation of dynamics is employed to derive closed form equations of motion.It is shown by using Lyapunov's first method that the dynamic responses of flexural modal variables become unstable during retraction of the flexible beam, while the dynamic response during extension of the beam is stable. Numerical simulation results are presented for the uniform axial motion induced transverse vibration for a typical flexible beam

Topics: Mechanical Engineering
Publisher: Elsevier
Year: 1996
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.