Article thumbnail

Improved Poincaré inequalities and solutions of the divergence in weighted norms

By Gabriel Acosta Rodriguez, María Eugenia Cejas and Ricardo Guillermo Duran

Abstract

The improved Poincaré inequality ||φ-φΩ||Lp(Ω)≤C||d∇φ||Lp(Ω) Where Ω ⊂ Rn is a bounded domain and d(x) is the distance from x to the boundary of Ω, has many applications. In particular, it can be used to obtain a decomposition of functions with vanishing integral into a sum of locally supported functions with the same property. Consequently, it can be used to go from local to global results, i.e., to extend to very general bounded domains results which are known for cubes. For example, this methodology can be used to prove the existence of solutions of the divergence in Sobolev spaces. The goal of this paper is to analyze the generalization of these results to the case of weighted norms. When the weight is in Ap the arguments used in the un-weighted case can be extended without great difficulty. However, we will show that the improved Poincaré inequality, as well as its above mentioned applications, can be extended to a more general class of weights.Fil: Acosta Rodriguez, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Cejas, María Eugenia. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentin

Topics: DIVERGENCE OPERATOR, POINCARÉ INEQUALITIES, WEIGHTS, Matemática Pura, Matemáticas, CIENCIAS NATURALES Y EXACTAS
Publisher: 'Finnish Academy of Science and Letters'
Year: 2017
DOI identifier: 10.5186/aasfm.2017.4212
OAI identifier: oai:ri.conicet.gov.ar:11336/55465
Provided by: CONICET Digital
Journal:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://hdl.handle.net/11336/55... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.