Functions of Phenylalanine Residues within the β-Barrel Stem of the Anthrax Toxin Pore

Abstract

A key step of anthrax toxin action involves the formation of a protein-translocating pore within the endosomal membrane by the Protective Antigen (PA) moiety. Formation of this transmembrane pore by PA involves interaction of the seven 2β2–2β3 loops of the heptameric precursor to generate a 14-strand transmembrane β barrel.We examined the effects on pore formation, protein translocation, and cytotoxicity, of mutating two phenylalanines, F313 and F314, that lie at the tip the β barrel, and a third one, F324, that lies part way up the barrel.Our results show that the function of these phenylalanine residues is to mediate membrane insertion and formation of stable transmembrane channels. Unlike F427, a key luminal residue in the cap of the pore, F313, F314, and F324 do not directly affect protein translocation through the pore. Our findings add to our knowledge of structure-function relationships of a key virulence factor of the anthrax bacillus

Similar works

Full text

thumbnail-image

Public Library of Science (PLOS)

Provided original full text link
Last time updated on 9/18/2018

This paper was published in Public Library of Science (PLOS).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.