Article thumbnail

: École d’Été 2018 - Teichmüller dynamics, mapping class groups and applications

By Saul Schleimer and Fanny Bastien

Abstract

Singular euclidean structures on surfaces are a key tool in the study of the mapping class group, of Teichmüller space, and of kleinian three-manifolds. François Guéritaud, while studying work of Ian Agol, gave a powerful technique for turning a singular euclidean structure (on a surface) into a triangulation (of a three-manifold). We will give an exposition of some of this work from the point of view of Delaunay triangulations for the L ∞ -metric. We will review the definitions in a relaxed fashion, discuss the technique, and then present applications to the study of strata in the space of singular euclidean structures. If time permits, we will also discuss the naturally occurring algorithmic questions

Topics: veering triangulations, Teichmüller dynamics mapping class groups and applications, Grenoble, eem2018, [MATH]Mathematics [math]
Publisher: HAL CCSD
Year: 2018
OAI identifier: oai:HAL:medihal-01836626v1
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://hal.archives-ouvertes.... (external link)
  • https://hal.archives-ouvertes.... (external link)
  • https://hal.archives-ouvertes.... (external link)
  • https://hal.archives-ouvertes.... (external link)
  • https://hal.archives-ouvertes.... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.