Study of magnetic gravity compensator topologies using an abstraction in the analytical interaction equations


This paper identifies an abstraction that is found in the equations that describe the 3D interaction between cuboidal permanent magnets and applies this to the magnetic design of a gravity compensator. It shows how the force between magnets and its position-sensitivity, important design parameters for magnetically levitated 6-DoF gravity compensators, may be translated into the magnetic domain and verifies this with 3D analytical models. With this information, a number of basic gravity compensator topologies is derived. These topologies are subsequently investigated in more detail, with specific focus on combining a high force with low position sensitivity

Similar works

This paper was published in NARCIS .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.