Numerical shakedown and non-shakedown responses of a Tresca half-space to a three-dimensional moving load

Abstract

Flexible pavements may fail due to excessive rutting as a result of accumulative plastic deformation; otherwise, if the load is small enough, pavements may deform plastically in the first number of load cycles and then reach a stable state which is termed as ‘shakedown’. Recently some lower-bound and upper-bound solutions have been developed to directly determine the load limit (i.e. shakedown limit) below which an elastic-plastic half space can shake down. However, the actual responses of an elasticplastic half-space subjected to repeated moving loads were not well revealed. In the present study, repeated moving surface loads are applied to a three-dimensional finite element model established in ABAQUS to research on the development of stresses and strains in a Tresca half-space. Also, a numerical shakedown limit can be determined according to the yield condition of structure under a static load following a number of load passes. It is found the development of residual stresses induced by plastic strains plays a key role in helping the half-space to reach the shakedown state. Good agreements are also observed between numerical and theoretical solutions for both shakedown limit and residual stress fields

    Similar works

    This paper was published in White Rose Research Online.

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.