Location of Repository

Tensile behavior and impact toughness of an AlSi3MgCr alloy

By Marialaura Tocci, Annalisa Pola, Lorenzo Montesano, Mattia Merlin, Gian Luca Garagnani and G. Marina La Vecchia

Abstract

Recently, an innovative AlSi3Mg alloy with Cr and Mn additions was developed for the production of truck wheels by means of a non-conventional hybrid technique, which combines features of both low pressure die casting and forging processes. The presence of both Cr and Mn leads to the formation of an inter metallic phase rich in Cr, Mn and Fe with a globular or dendritic morphology. Furthermore, proper solution treatments cause the formation of dispersions in the aluminium matrix. These dispersions are responsible of enhancing the alloy performance due to dispersion hardening mechanism. In the present work, the tensile properties and the impact toughness of the alloy in the as-cast and different heat-treated conditions were studied. Moreover, tensile and impact strength tests were performed on A356 samples in T6 condition machined from traditional LPDC wheels. whose results were compared with the performance of the innovative alloy. Fracture surfaces of tensile and Charpy specimens were observed by Scanning Electron Microscopy (SEM) in order to identify the role of Cr-Mn containing inter metallic particles in the failure mechanism and the influence of the heat treatment parameters. Considering the static properties, the innovative alloy showed remarkable values of tensile strength, while ductility was improved only after heat treatment optimization. Poor impact toughness values were measured and the microstructure analysis confirmed the presence of coarse inter metallic secondary phases, acting as crack initiation and propagation particles, on the fracture surfaces

Topics: Al-Si-Mg alloys, tensile test, impact test, fracture surface
Year: 2017
DOI identifier: 10.1016/j.prostr.2017.04.053
OAI identifier: oai:iris.unife.it:11392/2382619
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://hdl.handle.net/11392/23... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.