Design of adaptive exponential functional link network based non-linear filters


A novel nonlinear filter, which incorporates the concept of exponential sinusoidal models into nonlinear filters based on functional link networks (FLNs) has been developed in this paper. The proposed filter is designed to provide improved convergence characteristics over traditional FLN filters. The conventional trigonometric FLN may be considered as a special case of the proposed adaptive exponential FLN (AEFLN). An adaptive exponential least mean square (AELMS) algorithm has been derived and the same has been successfully applied for identification of a couple of nonlinear plants. The AEFLN-based nonlinear active noise control (ANC) system has also been designed and an adaptive exponential filtered-s least mean square (AEFsLMS) algorithm has been developed to update the weights as well as the exponential factor. Simulation study has revealed the improved noise mitigation offered by the AEFLN-based nonlinear ANC system.by Vinal Patel, Vaibhav Gandhi, Shashank Heda, and Nithin V. Georg

Similar works

Full text

oai:repository.iitgn.ac.in:123456789/2499Last time updated on 3/29/2018

This paper was published in IIT Gandhinagar.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

We use cookies to improve our website.

Learn more