Location of Repository

Iron-monosulfide oxidation in natural sediments: Resolving microbially mediated S transformations using XANES, electron microscopy, and selective extractions

By Edward D Burton, Richard T Bush, Leigh A Sullivan, Rosalie K Hocking, David RG Mitchell, Scott G Johnston, R W Fitzpatrick, M Raven, S McClure and L Y Yang

Abstract

Iron-monosulfide oxidation and associated S transformations in a natural sediment were examined by combining selective extractions, electron microscopy and S K-edge X-ray absorption near-edge structure (XANES) spectroscopy. The sediment examined in this study was collected from a waterway receiving acid−sulfate soil drainage. It contained a high acid-volatile sulfide content (1031 μmol g−1), reflecting an abundance of iron-monosulfide. The iron-monosulfide speciation in the initial sediment sample was dominated by nanocrystalline mackinawite (tetragonal FeS). At near-neutral pH and an O2 partial pressure of 0.2 atm, the mackinawite was found to oxidize rapidly, with a half-time of 29 ± 2 min. This oxidation rate did not differ significantly (P \u3c 0.05) between abiotic versus biotic conditions, demonstrating that oxidation of nanocrystalline mackinawite was not microbially mediated. The extraction results suggested that elemental S (S08) was a key intermediate S oxidation product. Transmission electron microscopy showed the S08 to be amorphous nanoglobules, 100−200 nm in diameter. The quantitative importance of S08 was confirmed by linear combination XANES spectroscopy, after accounting for the inherent effect of the nanoscale S08 particle-size on the corresponding XANES spectrum. Both the selective extraction and XANES data showed that oxidation of S08 to SO42− was mediated by microbial activity. In addition to directly revealing important S transformations, the XANES results support the accuracy of the selective extraction scheme employed here

Topics: Environmental Sciences
Publisher: ePublications@SCU
Year: 2009
OAI identifier: oai:epubs.scu.edu.au:esm_pubs-1579
Provided by: ePublications@SCU
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://epubs.scu.edu.au/esm_p... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.