Natural hybridization does not dissolve species boundaries in commercially important sea cucumbers

Abstract

The study of species boundaries in areas of sympatry provides important insight into speciation processes. We investigated whether (i) two sympatric holothurians, Holothuria scabra and H. s. var. versicolor constituted species, and (ii) specimens of intermediate phenotype hybrids. Results from allozyme and 16S mtDNA sequence analyses indicated these two sea cucumbers to be distinct but young biological and phylogenetic species. Several private allozyme alleles existed and a Bayesian analysis grouped varieties into separate clusters. MtDNA sequences hardly varied within each taxon, and nine single bp changes were diagnostic between these two taxa. Allozyme allele frequencies in individuals of intermediate phenotype were intermediate to those of H. scabra and H. s. var. versicolor, most private alleles were present and heterozygote frequencies were higher than in either species. Ancestry coefficients modelled for these individuals were close to 0.5, indicating that the two taxa contributed equally to their genome. MtDNA sequences were identical to those of either species. We conclude that individuals of intermediate phenotype represent F1 hybrids. The presence of hybrids demonstrates that the opportunity for introgression exists, but is not realized, as backcrossing and introgression were not supported by the data. Thus, the genetic integrity of either holothurian species remains intact through an unknown postzygotic mechanism, possibly hybrid sterility

Similar works

Full text

thumbnail-image

ePublications@SCU

redirect
Last time updated on 02/09/2013

This paper was published in ePublications@SCU.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.