Transformer fault diagnosis based on the improved PSO-BP neural network

Abstract

变压器故障诊断是非线性模式识别过程,单一的BP(Back Propagation)神经网络收敛速度慢、容易陷入局部最小值,提出用改进粒子群算法(Particle Swarm Optimization,缩写为PSO)进行优化。使神经网络的学习速率动态减小,保证前期充分搜索,后期网络稳定;动态调整PSO的惯性权重和学习因子适应不同阶段的搜索要求,同时引入变异思想,重新初始化某些变量跳出局部最小值。绝缘油中5种特征气体为判断依据,划分高能放电、低能放电、高温过热、中低温过热四种故障,运用新改进的算法建立故障诊断模型,100多个样本进行实际故障诊断,准确率达到83%以上。结果表明,改进PSO-BP更加..

Similar works

Full text

thumbnail-image

Shenyang Institute of Automation,Chinese Academy Of Sciences

Full text is not available
oaioai:ir.sia.cn/:173321/...Last time updated on 2/12/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.