Article thumbnail

Local region structured noise reduction for cortical optical imaging

By Liu YD(刘亚东), Hu DW(胡德文), Zhou ZT(周宗潭) and Liu FY(刘发益)


In this paper, we proposed a local region structured noise reduction method for cortical optical imaging (01). In our method, block-designed task paradigm was employed. Canonical correlation analysis (CCA) technique was used to extract the underlying structured sources voxel by voxel. The response signals were detected among structured sources by surrogate test based on the reduced autoregression model (ST-RARM) technique. The power of structured noise was eliminated from original time series and then the data were reconstructed. Monte-Carlo simulation was applied to demonstrate the validity of our method. The results showed that our method was more efficient in activated voxel detection compared to the generally used methods PCA, DCT. Further, by using our method the phase knowledge of response signals was well preserved in the reconstructed data and hence a more accurate estimate was obtained. The final activity mapping was generated by utilizing the knowledge of both response amplitude and phase. The vein artifacts were efficiently reduced. Six sets of true 01 data collected from the hind-paw (HP) area of rat's cortex were processed and improved activity mappings were obtained

Topics: Optical Imaging, Structured Noise, Canonical Correlation Analysis, Monte-carlo Simulation, Multi-taper Method
Year: 2009
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.