Abstract

Uncontrolled bleeding from traumatic wounds is a major factor in deaths resulting from military conflict, accidents, disasters and crime. Self-assembling peptide nanofibers have shown superior hemostatic activity, and herein, we elucidate their mechanism by visualizing the formation of nanofiber-based clots that aggregate blood components with a similar morphology to fibrin-based clots. Furthermore, to enhance its direct application to a wound, we developed layer-by-layer assembled thin film coatings onto common materials used for wound dressingsgauze and gelatin sponges. We find these nanofibers elute upon hydration under physiological conditions and generate nanofiber-based clots with blood. After exposure to a range of harsh temperature conditions (−80 to 60 °C) for a week and even 5 months at 60 °C, these hemostatic bandages remain capable of releasing active nanofibers. In addition, the application of these nanofiber-based films from gauze bandages was found to accelerate hemostasis in porcine skin wounds as compared to plain gauze. The thermal robustness, in combination with the self-assembling peptide’s potent hemostatic activity, biocompatibility, biodegradability, and low cost of production, makes this a promising approach for a cheap yet effective hemostatic bandage

Similar works

Full text

thumbnail-image
oaioai:figshare.com:artic...Last time updated on 2/12/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.