Abstract

Self-assembly of supramolecular biomaterials such as proteins or peptides has revealed great potential for their use in various applications ranging from scaffolds for cell culture to light-emitting diodes and piezoelectric transducers. Many of these applications require controlled growth of individual objects in the configuration allowing simple transfer to the desired device. In this work, we grew millimeter-long diphenylalanine (FF) self-assembled microtubes with high aspect ratio via evaporation-driven crystallization of nonsaturated FF solutions, making use of the Marangoni flow in the drying droplets. The growth mechanism was investigated by measuring the microtube length as a function of time. Jerky (steplike) growth behavior was observed and explained by a self-activated process in which additional activation energy is provided through condensation. The calculated growth rate due to the diffusion-controlled process is in agreement with the experimentally measured values. The grown microtubes were successfully transferred to metallized patterned substrates, and their specific conductivity and piezoelectric properties were evaluated as a function of the applied voltage and frequency. A number of piezoelectric resonances were observed and attributed to different vibrational modes excited by the piezoelectric effect inherent to the FF structure

Similar works

Full text

thumbnail-image
oaioai:figshare.com:artic...Last time updated on 2/12/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.