Wide Dynamic Range Sensing with Single Quantum Dot Biosensors


Single-particle analysis of biosensors that use charge transfer as the means for analyte-dependent signaling with semiconductor nanoparticles, or quantum dots, was examined. Single-particle analysis of biosensors that use energy transfer show analyte-dependent switching of nanoparticle emission from off to on. The charge-transfer-based biosensors reported here show constant emission, where the analyte (maltose) increases the emission intensity. By monitoring the same nanoparticles under various conditions, a single charge-transfer-based biosensor construct (one maltose binding protein, one protein attachment position for the reductant, one type of nanoparticle) showed a dynamic range for analyte (maltose) detection spanning from 100 pM to 10 μM while the emission intensities increase from 25 to 175% at the single-particle level. Since these biosensors were immobilized, the correlation between the detected maltose concentration and the maltose-dependent emission intensity increase could be examined. Minimal correlation between maltose detection limits and emission increases was observed, suggesting a variety of reductant-nanoparticle surface interactions that control maltose-dependent emission intensity responses. Despite the heterogeneous responses, monitoring biosensor emission intensity over 5 min provided a quantifiable method to monitor maltose concentration. Immobilizing and tracking these biosensors with heterogeneous responses, however, expanded the analyte-dependent emission intensity and the analyte dynamic range obtained from a single construct. Given the wide dynamic range and constant emission of charge-transfer-based biosensors, applying these single molecule techniques could provide ultrasensitive, real-time detection of small molecules in living cells

Similar works

Full text

oai:figshare.com:article/2484022Last time updated on 2/12/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.