Efficient Computation of the Hartree–Fock Exchange in Real-Space with Projection Operators


We describe an efficient projection-based real-space implementation of the nonlocal single-determinant exchange operator. Through a matrix representation of the projected operator, we show that this scheme works equally well for both occupied and virtual states. Our scheme reaches a speedup of 2 orders of magnitude and has no significant loss of accuracy compared to an implementation of the full nonlocal single-determinant exchange operator. We find excellent agreement upon comparing Hartree–Fock eigenvalues, dipoles, and polarizabilities of selected molecules calculated using our method to values in the literature. To illustrate the efficiency of this scheme we perform calculations on systems with up to 240 carbon atoms

Similar works

Full text

oai:figshare.com:article/3491729Last time updated on 2/12/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.