New Double-Infiltration Methodology to Prepare PCL–PS Core–Shell Nanocylinders Inside Anodic Aluminum Oxide Templates


Melt nanomolding of core–shell nanocylinders of different sizes, employing anodic aluminum oxide (AAO) templates, is reported here for the first time. The core–shell nanostructures are achieved by a new melt double-infiltration technique. During the first infiltration step, polystyrene (PS) nanotubes are produced by an adequate choice of AAO nanopore diameter size. In the second step, PCL is infiltrated inside the PS nanotubes, as its melting point (and infiltration temperature) is lower than the glass transition temperature of PS. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) measurements verified the complete double-infiltration of the polymers. Differential scanning calorimetry (DSC) experiments show that the infiltrated PCL undergoes a confined fractionated crystallization with two crystallization steps located at temperatures that depend on which surface is in contact with the PCL nanocylinders (i.e., alumina or PS). The melt double-infiltration methodology represents a novel approach to study the effect of the surrounding surface on polymer crystallization under confinement

Similar works

Full text

thumbnail-image time updated on 2/12/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.