Phase Transformation Accommodated Plasticity In Nanocrystalline Nickel

Abstract

Based on detailed x-ray diffraction and transmission electron microscopy we have found body-centered-cubic (bcc) Ni upon room-temperature rolling of nanocrystalline (nc) face-centered-cubic (fcc) Ni. The bcc phase forms via the Kurdjumov-Sachs (KS) martensitic transformation mechanism when the von Mises equivalent strain exceeds similar to 0.3, much higher than accessible in tensile testing. The fcc and bcc phases keep either the KS or the Nishiyama-Wasserman orientation relationship. Our results provide insights into the deformation physics in nc Ni, namely, the fcc-to-bcc phase transformation can also accommodate plasticity at large plastic strains. (C) 2008 American Institute of Physics

Similar works

Full text

thumbnail-image

Institute Of Mechanics,Chinese Academy of Sciences

redirect
Last time updated on 12/02/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.