oaioai:ira.lib.polyu.edu.hk:10397/34969

Numerical and experimental study on progressive failure of marble

Abstract

This study presents a framework for numerical simulations based upon micromechanical parameters in modeling progressive failures of heterogeneous rock specimens under compression. In our numerical simulations, a Weibull distribution of the strength and elastic properties of the finite elements is assumed, and the associated Weibull parameters are estimated in terms of microstructural properties, such as crack size distribution and grain size, through microscopic observations of microcracks. The main uncertainty in this procedure lies on the fact that various ways can be used to formulate a ``microcrack size distribution'' in relating to the Weibull parameters. As one possible choice, the present study uses the number of counted cracks per unit scanned volume per grain size to formulate the crack distributions. Finally, as a tool, the Rock Failure Process Analysis code (RFPA2D) is adopted for simulating the progressive failure and microseismicity of heterogeneous rocks by using an elastic-damage finite-element approach. To verify our framework, compression tests on marble specimens are conducted, and the measured acoustic emissions (AE) are compared with those predicted by the numerical simulations. The mode of failure, compressive strength and AE pattern of our simulations basically agree with experimental observations.Department of Civil and Environmental Engineerin

Similar works

Full text

thumbnail-image

The Hong Kong Polytechnic University Pao Yue-kong Library

Provided original full text link
oaioai:ira.lib.polyu.edu.hk:10397/34969Last time updated on 2/10/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.