A set of novel silicate glasses containing ZnO and co-doped with Er3+ and Yb3+ was designed as substrates for optical waveguide amplifiers. Characterized by exceptionally low up-conversion, minimum Er concentration quenching and high mechanical as well as chemical stability, the reported glasses can compete with phosphate-based materials typically used in the state-of-art active devices. Straight channel waveguides with propagation losses as low as 0.18 dB/cm were fabricated in these substrates using Ag+ double left right arrow Na+ and K+ double left right arrow Na+ thermal ion exchange. Net on-chip gain values of 6.7 dB at 1537 nm were measured and a net fiber to-fiber gain of 5 dB, was achieved when pumped at 976 nm. A six-level spatially resolved numerical model of an Er-Yb co-doped active waveguide was developed to analyze and optimize the amplifier performance. Modification of the rare-earth dopant concentration and the channel waveguide geometry was proposed to increase the gain figure and improve the overall amplifier efficiency
To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.