Article thumbnail

Large scale transient 5-HT3 receptor production with the Semliki Forest Virus Expression System

By H. D. Blasey, B. Brethon, R. Hovius, H. Vogel H., A. P. Tairi, K. Lundström, L. Rey and A. R. Bernard


The expression of recombinant proteins with the Semliki Forest Virus (SFV) system has been scaled up to bioreactor scale. As a model protein for this study the human 5-HT(3) receptor was chosen. The gene for the receptor was subcloned into the SFV expression plasmid pSFV1. Virus production by in vivo packaging and production of the recombinant protein was scaled up, the latter to a reactor volume of 11.5 l. A Vibromix(TM) agitation system was chosen to overcome aggregation problems of BHK cells in suspension. In the process, cells were first grown to a density of 10(6) cells/ml, the medium was then exchanged with fresh medium and the culture was infected with the recombinant virus at an estimated multiplicity of infection of 30. 24 h post infection we measured an expression level of 3 million functional 5-HT(3) receptors per cell. For harvesting, the cells were pelleted by centrifugation. The receptor protein was purified in a single step (Hovius et al., 1998) by exploiting the hexa-His tag at minimal protein loss (51% yield). Experiments to optimise expression resulted in yields up to 8 million receptors per cell, when the pH of a suspension culture was controlled at pH 7.3. Rapid virus generation and protein production, high protein yields as well as successful large scale application have made the SFV expression system attractive to produce large quantities of recombinant protein in a very short time. After optimisation of the expression conditions (in particular by setting the pH at 7.3), yields were increased twofold

Publisher: 'Springer Science and Business Media LLC'
Year: 2010
DOI identifier: 10.1023/A:1008192709549
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.