Article thumbnail

Haar Local Binary Pattern Feature for Fast Illumination Invariant Face Detection

By Anindya Roy and Sébastien Marcel

Abstract

Face detection is the first step in many visual processing systems like face recognition, emotion recognition and lip reading. In this paper, we propose a novel feature called Haar Local Binary Pattern (HLBP) feature for fast and reliable face detection, particularly in adverse imaging conditions. This binary feature compares bin values of Local Binary Pattern histograms calculated over two adjacent image subregions. These subregions are similar to those in the Haar masks, hence the name of the feature. They capture the region-specific variations of local texture patterns and are boosted using AdaBoost in a framework similar to that proposed by Viola and Jones. Preliminary results obtained on several standard databases show that it competes well with other face detection systems, especially in adverse illumination conditions

Year: 2010
OAI identifier: oai:infoscience.tind.io:146279

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.