Acceleration Capability in Elite Sprinters and Ground Impulse : Push More, Brake Less?


Epub 2015 Jul 17Overground sprint studies have shown the importance of net horizontal ground reaction force impulse (IMPH) for acceleration performance, but only investigated one or two steps over the acceleration phase, and not in elite sprinters. The main aim of this study was to distinguish between propulsive (IMPH+) and braking (IMPH−) components of the IMPH and seek whether, for an expected higher IMPH, faster elite sprinters produce greater IMPH+, smaller IMPH−, or both.Nine high-level sprinters (100-m best times range: 9.95–10.60 s) performed 7 sprints (2×10 m, 2×15 m, 20 m, 30 m and 40 m) during which ground reaction force was measured by a 6.60 m force platform system. By placing the starting-blocks further from the force plates at each trial, and pooling the data, we could assess the mechanics of an entire “virtual” 40-m acceleration.IMPH and IMPH+ were significantly correlated with 40-m mean speed (r=0.868 and 0.802, respectively; P<0.01), whereas vertical impulse and IMPH− were not. Multiple regression analyses confirmed the significantly higher importance of IMPH+ for sprint acceleration performance. Similar results were obtained when considering these mechanical data averaged over the first half of the sprint, but not over the second half. In conclusion, faster sprinters were those who produced the highest amounts of horizontal net impulse per unit body mass, and those who “pushed more” (higher IMPH+), but not necessarily those who also “braked less” (lower IMPH−) in the horizontal direction

Similar works

Full text


Hal - Université Grenoble Alpes

Provided original full text link
oaioai:HAL:hal-01467710v1Last time updated on 2/8/2018

This paper was published in Hal - Université Grenoble Alpes.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.