Effective equilibrium states in the colored-noise model for active matter II. A unified framework for phase equilibria, structure and mechanical properties


Active particles driven by colored noise can be approximately mapped onto a system that obeys detailed balance. The effective interactions which can be derived for such a system allow the description of the structure and phase behavior of the active fluid by means of an effective free energy. In this paper we explain why the related thermodynamic results for pressure and interfacial tension do not represent the results one would measure mechanically. We derive a dynamical density functional theory, which in the steady state simultaneously validates the use of effective interactions and provides access to mechanical quantities. Our calculations suggest that in the colored-noise model the mechanical pressure in the coexisting phases might be unequal and the interfacial tension can become negative

    Similar works

    Full text


    RERO DOC Digital Library

    Provided a free PDF time updated on 2/8/2018View original full text link

    This paper was published in RERO DOC Digital Library.

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.