Environmental effects shape the maternal transfer of carotenoids and vitamin E to the yolk.


This is the final version of the article. Available from BioMed Central via the DOI in this record.UNLABELLED: INTRODUCTION: Maternal effects occur when the phenotype of the offspring is influenced by the phenotype of the mother, which in turn depends on her heritable state as well as on influences from the current and past environmental conditions. All of these pathways may, therefore, form significant sources of variation in maternal effects. Here, we focused on the maternal transfer of carotenoids and vitamin E to the egg yolk, using canaries as a model species. Maternal yolk carotenoids and vitamin E are known to generate significant phenotypic variation in offspring, representing examples of maternal effects. We studied the intra-individual consistency in deposition patterns across two years and the mother-daughter resemblance across two generations in order to estimate the level of heritable variation. The effects of the current environmental conditions were studied via a food supplementation experiment, while the consequences of past environmental conditions were estimated on the basis of the early growth trajectories. RESULTS: There was a significant effect of the current environmental conditions on the yolk carotenoid and vitamin E deposition, but this effect varied between antioxidant components. The deposition of yolk carotenoids and vitamin E were linked to the process of yolk formation. Past environmental conditions did not contribute to the variation in yolk carotenoid and vitamin E levels nor did we find significant heritable variation. CONCLUSIONS: The transfer of carotenoids or vitamin E may be an example where current environmental variation is largely passed from the mother to the offspring, despite the numerous intermediate physiological steps that are involved. Differences in the effect of the environmental conditions as experienced by the mother during laying may be due to differences in availability as well as physiological processes such as competitive exclusion or selective absorption.All experiments have been conducted according to Belgian legislation for animal experimentation (permit number 2006–19 and 2008–26). We thank Peter Scheys and Geert Eens for their assistance with taking care of the birds, and four anonymous reviewers provided valuable comments, which helped to improve the manuscript. WM was supported by FWO Flanders Belgium (1503307 and 1503307 N) and by the University of Antwerp (KP BOF UA 2006, 2008). JV by the Institute for the Promotion of Innovation through Science and Technology (IWT) in Flanders, ME was supported by the University of Antwerp and FWO Flanders. JDB was supported by a Royal Society University Research Fellowship

Similar works

This paper was published in Open Research Exeter.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.