Skip to main content
Article thumbnail
Location of Repository

Fluktuationsspektroskopie an organischen Ladungstransfersalzen

By Jens Brandenburg

Abstract

Quasi-zweidimensionale organischen Ladungstransfersalze weisen gewisse Analogien zu den Hochtemperatur-Kupratsupraleitern (HTSL) auf. Zu nennen ist einerseits der ähnliche schichtartige Aufbau, wobei sich leitfähige und isolierende Ebenen abwechseln. Zum anderen liegt der antiferromagnetische Grundzustand in direkter Nachbarschaft zur Supraleitung und bei höheren Temperaturen wird ebenfalls die Entstehung einer Pseudo-Energielücke diskutiert. Im Gegensatz zu den HTSL können die elektronischen Eigenschaften der organischen Ladungstransfersalze jedoch leicht durch äußere Parameter wie hydrostatischen bzw. chemischen Druck - die Verwendung verschiedener Anionen X läßt sich in einem verallgemeinerten Phasendiagramm ebenfalls auf die Achse W/U abbilden, siehe Abschn. 4.2 - oder moderate Temperaturen beeinflußt werden. In den quasi-zweidimensionalen K-(BEDT-TTF)2X-Salzen ist bspw. ein moderater Druck p ~ 250 bar ausreichend, um das antiferromagnetisch-isolierende System (X=Cu[N(CN)2]Cl) auf die metallische Seite des Phasendiagramms zu verschieben, wobei dann im Grundzustand Supraleitung auftritt (Tc ~ 12,8 K). Eine Dotierung wie bei den HTSL und die damit einhergehende unerwünschte Unordnung ist nicht notwendig um einen Isolator-Metall-übergang zu induzieren. Demnach sind die experimentellen Anforderungen im Vergleich zu anderen stark korrelierten Elektronensystemen auf relativ einfache Weise zu realisieren. Auch das macht die organischen Ladungstransfersalze zu idealen Modellsystemen, um fundamentale Konzepte der theoretischen Festkörperphysik zu studieren, wovon einige bislang lediglich von akademischem Interesse waren. Erstmalig wird in dieser Arbeit die Fluktuationsspektroskopie als experimentelle Methode angewendet, um die Dynamik des TT-Elektronensystems in den quasi-zweidimensionalen organischen Ladungstransfersalzen K-(BEDT-TTF)2X bei niedrigen Frequenzen zu studieren. Ziel ist es, Informationen über die Temperatur-, Druck- und Magnetfeld-Abhängigkeit der spektralen Leistungsdichte des Widerstandsrauschens und damit über die Dynamik der Ladungsfluktuationen zu gewinnen. Insbesondere in der Nähe korrelationsgetriebener Ordnungsphänomene spielt die Dynamik der Ladungsträger eine entscheidende Rolle. Auch die Kopplung des elektronischen Systems an bestimmte strukturelle Anregungen hat Einfluß auf das Widerstandsrauschen. Zu Beginn wird eine kurze Einführung in die Signalanalyse gegeben und daran anschließend werden verschiedene Arten des Rauschens in Festkörpern dargestellt (Kap. 1). Einige der für diese Arbeit relevanten Ordnungsphänomene werden in Kap. 2 in knapper Form eingeführt, wobei auf die dynamischen Eigenschaften in der Nähe eines Glasübergangs etwas ausführlicher eingegangen wird. Nach der Vorstellung der eingesetzten Meßmethoden, des Versuchsaufbaus und der Probenkontaktierung (Kap. 3) werden die experimentellen Ergebnisse an den K-(BEDT-TTF)2X-Salzen in Kap. 4 ausführlich diskutiert.Quasi-twodimensional organic charge-transfer salts show certain analogies to the High-Temperature Cuprate Superconductors (HTSC), e.g., the layered structure where conducting and insulating sheets do alternate as well as the direct proximity of the antiferromagnetic insulating ground state to the superconducting phase. At higher temperatures the formation of a pseudo-gap in the density of states is discussed also. In contrast to the HTSC the electronic properties of the organic charge-transfer salts can be easily influenced by external parameters such as hydrostatic or chemical pressure - in a generalized phase diagram the usage of different anions X can be mapped on the axis W/U as well, see Sec. 4.2 - or moderate temperatures. In the quasi-twodimensional K-(BEDT-TTF)2X salts, e.g., a moderate pressure of p ~ 250 bar is sufficient to shift the antiferromagnetic-insulating system (X=Cu[N(CN)2]Cl) to the metallic side of the phase diagram showing even superconductivity below a critical temperature of Tc ~ 12.8 K. Doping as in the HTSC and the undesirable disorder accompanied with it is not necessary to induce a metal-to-insulator transition. Therefore the experimental requirements are more easily met in this class of materials compared to other strongly correlated electron systems. All this makes the organic charge-transfer salts ideal model systems to study fundamental concepts of theoretical solid state physics some of which have been of academical interest only so far. In this work fluctuation spectroscopy has been used for the first time to investigate the low-frequency dynamics of the TT-electron system in the quasi-twodimensional organic charge-transfer salts K-(BEDT-TTF)2X with the aim to gain information about the temperature, pressure and magnetic field dependence of the power spectral density of the resistance noise and therefore about the dynamics of the charge carrier fluctuations. Especially in the vicinity of correlation driven ordering phenomena the dynamics of the charge carriers play an important role. Additionally, the coupling of the electronic system to certain structural excitations influences the resistance noise. At the beginning a short introduction to signal analysis is given, followed by a description of different kinds of noise in solids (Chap. 1). Some of the ordering phenoma relevant for this work are briefly introduced in Chap. 2 in which the dynamical properties near a glass transition are discussed in more detail. After the presentation of the applied measuring techniques, the experimental setup, and the sample contacting (Ch. 3), the experimental results on the K-(BEDT-TTF)2X salts are discussed extensively in Chap. 4

Topics: ddc:530
Year: 2011
OAI identifier: oai:publikationen.ub.uni-frankfurt.de:11027

Suggested articles

Citations

  1. A dierent universe: Reinventing physics from the bottom down. Basic Books New York, 2005.
  2. (1174). A.
  3. A. Antal, T. Feh er, A. J
  4. A. Antal, T. Feh er, E. T atrai-Szekeres, F. F ul
  5. A. G. Khomenko, and E. B. Yagubskii. Anisotropic resistivity and thermopower
  6. (1958). Absence of Diusion in Certain Random Lattices.
  7. (1987). AC method for measuring low-frequency resistance uctuation spectra.
  8. and
  9. (1994). and P. Svedlindh. Noise
  10. B.
  11. B. R. Patton, and J. R. Gaines. 1=f-noise-power measurements of copper oxide
  12. B. Raquet, A. Anane, S. Wirth, P.
  13. B. Wolf, D. Schweitzer, and M. Lang. Anomalous Lattice Response at the Mott Transition in
  14. Bartosch, M. de Souza, and M. Lang. Scaling Theory of the Mott Transition and Breakdown of the Gr uneisen Scaling Near a
  15. Bindloss, E. Fradkin, V.
  16. Chemical
  17. Cl).
  18. (1997). Condensed Matter Physics: Similarities Between Organic and Cuprate Superconductors.
  19. Crooker,
  20. D. M. Watkins, and G. A. Yaconi. Pressuretemperature phase diagram, inverse isotope eect, and
  21. D. M. Watkins, and J. M. Kommers. From semiconductorsemiconductor transition
  22. (1951). Dielectric Relaxation in Glycerol, Propylene Glycol, and n-Propanol.
  23. (1985). Disordered electronic systems.
  24. (1998). Do cathedral glasses ow?
  25. (1999). Do cathedral glasses ow?|Additional remarks.
  26. (1984). Dynamics of supercooled liquids and the glass transition.
  27. E. Dagotto.
  28. (1997). Electron correlation, metal-insulator transition and superconductivity in quasi-2D organic systems (ET)2X. Physica C: Superconductivity, 282-287(Part 1):299{302,
  29. (2002). Evidence for structural and electronic instabilities at intermediate temperatures in -(BEDTTTF)2X for X=Cu[N(CN)2]Cl, Cu[N(CN)2]Br and Cu(NCS)2: Implications for the phase diagram of these quasi-two-dimensional organic superconductors.
  30. (1996). Fermi Surfaces of Low-Dimensional Organic Metals and Superconductors.
  31. (1991). Freezing and the Glass Transition.
  32. (2000). Glassy dynamics.
  33. (1989). Ground state of the two-dimensional electron gas.
  34. (2006). H ochste Magnetfelder.
  35. H. Akutsu, K. Saito, and M. Sorai. Phase behavior of the organic superconductors -(BEDT-TTF)2Cu[N(CN)2]X
  36. H. Mayare, D. Jrome, and S.
  37. H. Mayare, P. Wzietek, D. J
  38. H. Tajima, T. Ito, and Y. Iwasa. Electronic correlation in the infrared optical properties
  39. H. Taniguchi, A. Kawamoto, and K. Kanoda. Electronic speci heat at the boundary region of the metal-insulator transition in the two-dimensional
  40. (2004). High Magnetic Fields: A Tool for Studying Electronic Properties of Layered Organic Metals.
  41. (1996). High-frequency dielectric spectroscopy on glycerol.
  42. I.
  43. (1980). Interaction eects in disordered fermi systems in two dimensions.
  44. J.
  45. J. M. Tranquada,
  46. J. Merino and R. H. McKenzie. Transport properties of
  47. J. P. Zheng, Q. Y. Ying, S. Y. Dong, H. S.
  48. K.
  49. K. Kanoda. Recent
  50. K. M. Lang, V. Madhavan,
  51. K. Miyagawa, A. Kawamoto, and K. Kanoda. Proximity of Pseudogapped Superconductor and Commensurate Antiferromagnet in
  52. K. Saito, H. Akutsu, and M. Sorai. Glass transition in the organic superconductor with
  53. L. B. Kiss and P. Svedlindh. New noise exponents in random conductorsuperconductor and conductor-insulator mixtures. Physical Review Letters, 71(17):2817{2820, Oct 1993. 122, 123, 125, 134
  54. L. B. Kiss, T. Larsson, P. Svedlindh, L. Lundgren, H. Ohls en, M. Ottosson, J. Hudner, and L. Stolt. Conductance noise and percolation in YBa2Cu3O7 thin Physica C: Superconductivity, 207(3-4):318 { 332, 1993. 123, 134
  55. Lang, F. Steglich, and J. A. Schlueter. Glass-like transition in -(ET)2Cu[ N(CN)2] Br at Tg 75
  56. (1993). Localization: theory and experiment.
  57. (2007). Low-Dimensional Molecular Metals. Solid State Science.
  58. M. de Souza. Thermal Expansion and Transport Properties of
  59. M. Dumm. Bandwidth-controlled Mott transition
  60. M. Kubota, N. Kojima, and G. Saito. Temperature-pressure phase diagrams
  61. M. Tokumoto, N. Kinoshita, and H. Anzai.
  62. M. V. Kartsovnik, A. E. Kovalev, L. P. Rozenberg, R. P. Shibaeva, M. A. Tanatar, V. S. Yefanov, V. V.
  63. Menovsky, Y. Tomioka, J. Aarts, and J. A. Mydosh. Spatially Inhomogeneous Metal-Insulator Transition in Doped Manganites.
  64. (1998). Metal-insulator transitions.
  65. (1990). Metal-Insulator Transitions. Taylor & Francis, 2nd edition,
  66. (2001). Metallic behavior and related phenomena in two dimensions.
  67. (2000). Mott Transition, Antiferromagnetism, and Unconventional Superconductivity in Layered Organic Superconductors. Physical Review Letters,
  68. N.
  69. N. D. Kushch, and E. B. Yagubskii. Hydrostatic pressure eect on Tc and
  70. N. D. Kushch, and E. B. Yagubskii. Localization and superconductivity in (BEDT-TIF)2Cu[N(CN)2]Cl:
  71. N. Yoneyama, A. Matsuyama, and N. Kobayashi. Magnetic and electronic phase diagram and superconductivity in
  72. (1992). Organic Superconductors (Including Fullerens).
  73. (1998). Organic Superconductors.
  74. (1990). Orientational glasses.
  75. Phase
  76. Physical
  77. Poirier, M. Castonguay, and K. D. Truong. Elastic study of antiferromagnetic uctuations in the
  78. Porter,
  79. R.
  80. (2006). Rauschmessungen an hochorientiertem pyrolytischen Graphit. Master's thesis, Universit at Leipzig,
  81. (2002). Relaxation dynamics in plastic crystals.
  82. (1992). Relaxation processes in supercooled liquids.
  83. Review
  84. (2009). Revision of Model Parameters for -Type Charge Transfer Salts: An Ab Initio Study. Physical Review Letters,
  85. S.
  86. S. M. De Soto. 13C NMR studies of the normal and superconducting states of
  87. (1990). Scaling in the relaxation of supercooled liquids.
  88. (1986). Scaling properties of correlation functions at the liquidglass transition.
  89. (1979). Scaling Theory of Localization: Absence of Quantum Diusion in Two Dimensions. Physical Review Letters,
  90. Schlueter, A. M. Kini, and T. Sasaki. Phasetransition anomalies in the lattice response
  91. Schlueter. 1=f noise in the quasi-twodimensional organic conductor -(BEDT-TTF)2Cu[N(CN)2]Cl. Physical Review B, 79(21):214521, 2009. 88
  92. Sh.
  93. (1988). Shubnikovde Haas eect and the fermi surface in an ambient-pressure organic superconductor Bis(ethylenedithiolo)tetrathiafulvalene2Cu(NCS)2. Physical Review B,
  94. (2009). Soft Hubbard Gaps in Disordered Itinerant Models with Short-Range Interaction.
  95. Solid
  96. (1986). Spin glasses: Experimental facts, theoretical concepts, and open questions.
  97. Stauer and A. Aharony. Introduction to Percolation Theory. Taylor
  98. (2006). Strong electronic correlations in superconducting organic charge transfer salts.
  99. (2000). Studies of quasi-two-dimensional organic conductors based on BEDTTTF using high magnetic Reports on
  100. (2003). T Phase Diagram of Layered Organic Superconductors: An Ultrasonic Investigation. Physical Review Letters,
  101. T. Ishiguro, M. Kubota, and G. Saito. Metal-Nonmetal Transition and Superconductivity Localization
  102. T. Ishiguro, S. Horiuchi, and G. Saito. Reentrant superconductivity
  103. T. Itou, K. Miyagawa, and K. Kanoda. Transport criticality of the rst-order Mott
  104. T. Sasaki, N. Yoneyama, A.
  105. T. Sasaki, N. Yoneyama, N.
  106. (1986). The Crystal and Molecular Structures of Bis(ethylenedithio)tetrathiafulvalene.
  107. (1948). The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures.
  108. (1974). Theory of Electric Polarization.
  109. (2006). Theory of simple liquids.
  110. (2002). Thermodynamische Untersuchungen an quasi-zweidimensionalen organischen Supraleitern.
  111. (1949). to the Transition Metals.
  112. (2004). Toward Systematic Understanding of Diversity of Electronic Properties in Low-Dimensional Molecular Solids.
  113. Toyota and T. Sasaki. On the
  114. (2005). Unconventional critical behaviour in a quasi-two-dimensional organic conductor.
  115. (1970). Viscous Liquids and the Glass Transition. II. Secondary Relaxations in Glasses of Rigid Molecules.
  116. X. Su, F. Zuo, J. A. Schlueter,
  117. Yoneyama,

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.