Location of Repository

Der Einfluss molekularer Mechanismen auf die Expression des NO-sensitiven Rezeptors lösliche Guanylatzyklase (sGC)

By Rashi Srivastava


Soluble guanylyl cyclase (sGC) is a cytosolic enzyme producing the intracellular messenger cyclic guanosine monophosphate (cGMP) on activation with nitric oxide (NO) which leads to the activation of GMP dependent protein kinases and to vasodilation. NO signaling may be affected by altered expression of sGC subunits, as has been shown in different pathological and physiological conditions and developmental stages. The molecular mechanisms underlying altered sGC expression in these and other conditions have not yet been revealed. Gene expression can also be regulated at the level of mRNA through alterations in translational efficiency and in mRNA stability. HuR (Human R) is a ubiquitously expressed member of the embryonic lethal abnormal vision (ELAV) family of RNA-binding proteins. Among other RNAs, there has been recent evidence that the expression of sGC is subject to post-transcriptional regulation by HuR. It has been shown that chronic hypertension induces changes in HuR expression and activity, which account for decreased sGC expression and activity in the aorta of hypertensive rats. This thesis should study was performed in an effort to provide some insight to the transcriptional and post-transcriptional regulation of sGC expression in a mammal, the rat. We investigated rat sGC alpha-1 transcriptional regulation in rat lung fibroblast (RLF-6) cells. The 3000bp 5' upstream region of the alpha-1 sGC gene was isolated and analyzed for promoter activity by using luciferase reporter constructs- Alpha3000 (with -2794 bp), Alpha1100 (-1092 bp), Alpha350 (-346 bp) and Alpha200 (-200 bp). The promoter activity was the highest in the 200bp construct (about 6-fold higher than Alpha3000) suggesting that this fragment contains all the crucial elements necessary to support basal transcription of the alpha-1 sGC gene. Analysis of the 200 bp of the 5’ UTR of the alpha-1 gene was performed using the MATINSPECTOR V2.2 software for putative transcription factors. The constructs containing the deleted sites for NFY and Sp1 showed a significant decrease in constitutive promoter activity by almost 80% and 60% respectively, implying that these transcription factors are crucial elements in the basal expression of the of sGC alpha-1 subunit. Treatment of RLF-6 cells with genistein 50 microM and mithramycinA 100 nM, known to inhibit the NFY and Sp1 binding to DNA respectively, reflected the same effects. Furthermore the cGMP content of the cells was significantly reduced by both inhibitors, almost completely by genistein, and by about 40 % by mithramycinA. Electrophoretic mobility-shift assay (EMSA) clearly showed the formation of multiple complexes with the biotinylated ODN (decoy oligodeoxynucleotide) probes for NFY and Sp1 when incubated with RLF-6 nuclear extract. A “supershift” observed in the presence of antibodies to the individual transcription factors confirmed that these factors were present in the shifted band, indeed. NFY and Sp1 are instrumental in several physiological and pathophysiological effects mediated by several growth factors in smooth muscle cells. Thus the regulation of the promoter, in response to serum, was also analysed. 10% foetal calf serum led to decreased alpha-1 sGC level as shown by western blots performed with rat aorta. Decreased sGC alpha-1 mRNA expression was observed in RLF-6 cells and cultured rat aortic smooth muscle cells incubated with FCS for 24 hours. This decrease was reflected in the promoter activity in RLF-6 cells using both Alpha3000 and Alpha200 constructs confirming that the regulation took place at promoter level. EMSA performed with nuclear extracts from FCS treated RLF-6 cells led to diminished binding to NFY, but to an enhanced binding to Sp1 site. We concluded that the factors Sp1 and NFY (the sites overlapping) compete for binding, and in the presence of FCS, it is Sp1 that binds stronger, and hence results in diminishing promoter activity. In order to delineate the post-transcriptional regulation of sGC alpha-1 subunit, studies were performed to demonstrate the regulation of expression of the mRNA stabilizing protein HuR. It has been observed that exposure of isolated rat aortic segments to the activator of adenylyl cyclase, forskolin, strongly reduced sGC alpha-1/beta-1 and HuR protein and mRNA expression in a time-dependent and actinomycin D-sensitive fashion. Transcription factor decoy approach proved that the cAMP-induced down-regulation of HuR is mediated by the activation of AP-1. It has been established that HuR stabilises the sGC alpha-1 and beta-1 mRNA. However the pathway underlying this regulation remains unknown. In order to identify the mechanism of this regulation, we looked for HuR interacting proteins employing the yeast two hybrid assay. The enzyme of the polyamine catabolic pathway spermidine/spermine N1-acetyltransferase (SSAT) was found to interact with the hinge region of HuR. This interaction was confirmed by performing immunoprecipitation and GST-pulldown experiments. A direct effect of these proteins on each other’s biological activity was not visible as tested through the SSAT activity assay and HuR gel shift. It might be possible that SSAT-mediated modulation of local polyamine concentrations enhances/reduces HuR activity and sGC expression to affect cell proliferation. In summary, this study represents an analysis of the rat sGC alpha-1 promoter regulation in rat fibroblast cells and identifies NFY and Sp1 as important factors in sGC alpha-1 expression. It also gives first evidence of sGC regulation at the transcriptional level in response to an external stimulus, and proposes the possible mechanism. It also identifies SSAT as a HuR interacting protein. These might have implications in the various pathophysiological conditions where sGC plays an important role.Die lösliche Guanylatzyklase (soluble guanylyl cyclase, sGC) ist ein Schlüsselenzym der NO/cGMP Signaltransduktion im kardiovaskulären System. Nach Aktivierung der sGC durch Stickstoffmonoxid (NO) kommt es in glatten Muskelzellen zur Produktion von zyklischem 3’,5’-Guanosinmonophosphat (cGMP), das als intrazelluläres Signaltransduktionsmolekül die Aktivierung von cGMP-abhängigen Proteinkinasen vermittelt und zur Vasodilatation führt. Die NO/cGMP-Signaltransduktion kann auch auf der Ebene der Gen-Expression beeinflusst werden. So konnte in verschiedenen physiologischen bzw. pathophysiologischen Modellen gezeigt werden, dass die unterschiedliche Expression von sGC-Untereinheiten die NO/cGMP-Signaltransduktion beeinflusst. Die molekularen Mechanismen, die auf der unterschiedlichen Expression der sGC-Untereinheiten basieren, wurden bisher noch nicht ausreichend aufgeklärt. Die Gen-Expression kann auf mRNA-Ebene durch Veränderung der Translation und der mRNA- (messenger ribonucleic acid, Boten-Ribonnukleinsäure) Stabilität reguliert werden. HuR (Human R) ist ist ein ubiquitär vorkommendes Mitglied der embryonic lethal abnormal vision (ELAV-) Familie der RNA-bindenden Proteine. Neben der Regulierung anderer Gene gibt es Hinweise darauf, dass auch die Expression der sGC einer post-translationalen Regulation durch HuR unterliegt. So wurde gezeigt, dass chronischer Bluthochdruck Veränderungen in der HuR-Expression und -Aktivität verursacht, was zu einer verminderten sGC-Expression und -Aktivität in der Aorta von hypertensiven Ratten führt. Diese Arbeit soll einen Einblick in die transkriptionale und post-transkriptionale Regulation der sGC-Expression im Rattenmodell liefern. Im Rahmen dieser Arbeit wurde die translationale Regulation der alpha-1 sGC-Untereinheit der Ratte in Rattenlungen-Fibroblastenzellen (rat lung fibroblast cells, RLA-6) untersucht. Es wurden die 3000 bp der 5´ upstream Region des Gens der alpha-1 sGC-Untereinheit isoliert und mit Hilfe von Luziferase-Reporter-Konstrukten - Alpha3000 (mit -2794 bp), Alpha1100 (-1092 bp), Alpha350 (-346 bp) und Alpha200 (-200 bp) - auf Promotor-Aktivität untersucht. Dabei war die Promotor-Aktivität des 200 bp Konstrukts am höchsten (ca. 6-fach im Vergleich zu Alpha3000). Dies deutete daraufhin, dass dieses Fragment entscheidende Elemente enthält, die für die basale Transkription des alpha-1 sGC Gens nötig sind. Um nach vermeintlichen Transkriptionsfaktoren zu suchen, wurde die Analyse der 200 bp am 5´ UTR des alpha-1 Gens mit der MATINSPECTOR V2.2 Software durchgeführt. Die Konstrukte mit den entfernten Stellen für NFY und Sp1 zeigten eine signifikante Verminderung in der konstitutiven Promotor-Aktivität zu fast 80 und 60%. Dies deutete daraufhin, dass diese Transkriptionsfaktoren entscheidend sind für die basale Expression der alpha-1 sGC-Untereinheit. Die Behandlung der RLF-6 Zellen mit Genistein (50 mikroM) und Mithramycin A (100 nM), die die Anbindung von NFY und Sp1 an die DNA inhibieren, führte ebenfalls zu einer Reduktion der Promotor-Aktivität. Außerdem war der Gehalt von cGMP in den Zellen durch die beiden Inhibitoren signifikant reduziert - mit Genistein wurde eine fast komplette Inhibition erreicht und mit Mithramycin A eine Reduktion um ca. 40%. Der EMSA (electrophoretic mobility-shift assay) zeigte deutlich die Bildung von multiplen Komplexen mit biotinylierten ODN (decoy oligodeoxynucleotide) Proben für NFY und Sp1, wenn diese mit RLF-6 Zellkern-Extrakt inkubiert wurden. In einem „supershift“ konnten die einzelnen Transkriptionsfaktoren mit Antikörpern nachgewiesen werden. NFY und Sp1 sind an zahlreichen physiologischen und pathophysiologischen Prozessen in glatten Muskelzellen beteiligt, die durch Wachstumsfaktoren gesteuert werden. Aus diesem Grund wurde die Regulation des Promotors in Gegenwart von Serum analysiert. Mit Western-Blot Analysen konnte gezeigt werden, dass 10 % fötales Kälber-Serum (foetal calf serum, FCS) zu einer verminderten Expression von alpha-1 sGC in Rattenaortenringen führte. Eine verminderte sGC alpha-1 mRNA-Expression wurde in RLF-6 Zellen und in kultivierten glatten Muskelzellen der Rattenaorta, die mit FCS über 24 Stunden inkubiert wurden, demonstriert. Diese Verminderung ging einher mit einer verminderten Promotor-Aktivität der Konstrukte Alpha3000 und Alpha200 in RLF-6 Zellen, was eine Regulation auf Promotor-Ebene aufzeigte. EMSA Studien mit Zellkern-Extrakt aus FCS-vorbehandelten RLF-6 Zellen zeigten eine verminderte NFY-, aber eine gesteigerte Sp1-Bindung. Daraus wurde gefolgert, dass die Faktoren Sp1 und NFY um eine Bindungsstelle am Promotor konkurrieren und dass die Gegenwart von FCS zu einer verstärkten Sp1-Bindung und damit zu einer verminderten Promotor-Aktivität führt. Um die post-transkriptionale Regulation der alpha-1 sGC-Untereinheit zu demonstrieren, wurden Versuche zur Regulation der Expression des mRNA-stablisierenden Proteins HuR durchgeführt. Es konnte gezeigt werden, dass die Inkubation von isolierten Rattengefäßringen mit Forskolin, einem Aktivator der Adenylatzyklase, die sGC alpha-1/beta-1 und die HuR Protein- und mRNA-Expression zeitabhängig und Actinomycin D-sensitiv reduziert. Der Transkriptionsfaktor-Abbau bewies, dass die cAMP-induzierte Runterregulation von HuR durch die Aktivierung von AP-1 vermittelt wird. Es konnte festgestellt werden, dass HuR die alpha-1 und beta-1 mRNA der sGC stabilisiert. Aber die Regulation dieser Signalwege war bisher unbekannt. Um den Mechanismus der Regulation zu identifizieren, haben wir nach HuR-interagierenden Proteinen durch Anwendung des Yeast-two-hybrid assays gesucht. Die Enzyme des Polyamin-katabolischen Signalwegs Spermidin/ Spermin N1-Acetyltransferase (SSAT) wurden als eine hinge Region von HuR entdeckt. Diese Interaktion wurde bestätigt durch Immunopräzipitation und GST-pulldown Experimente. Einen direkten gegenseitigen Effekt auf die Aktivität dieser Proteine war nicht sichtbar, was durch SSAT activity assays und HuR gel shifts getested wurde. Es könnte möglich sein, dass die SSAT-vermittelte Modulation der lokalen Polyamin-Konzentration die HuR-Aktivität und die sGC-Expression fördert bzw. vermindert bei der Zellproliferation. Diese Arbeit zeigt eine Analyse der Promotor-Regulation der alpha-1 sGC-Untereinheit der Ratte in Fibroblastenzellen der Ratte und identifiziert NFY und Sp1 als wichtige Faktoren in der alpha-1 sGC-Expression. Die sGC-Regulation auf transkriptionaler Ebene unter Beteiligung der Transkriptionsfaktoren NFY und Sp1, ausgelöst durch Serum als externen Stimulus, weist auf einen möglichen Mechanismus hin. Außerdem wurde SSAT als HuR-Interaktionsprotein identifiziert. Die in dieser Arbeit dargestellte Regulation der sGC-Expression könnte Einfluss haben auf verschiedene pathophysiologische Zustände

Topics: Guanylatcyclase, Genexpression, Stickstoffmonoxid, RNS, RNS-Bindungsproteine, Yeast-Two-Hybrid-System, ddc:570
Year: 2006
OAI identifier: oai:publikationen.ub.uni-frankfurt.de:1929

Suggested articles



  1. (1999). 132Bauersachs J,Bouloumie A,Mulsch A,Wiemer G,Fleming I,Busse R
  2. (1997). 133Bloch KD,Filippov G,Sanchez LS,Nakane M,de la Monte SM
  3. (1994). 134Buechler WA,Ivanova K,Wolfram G,Drummer C,Heim JM,Gerzer R
  4. (2002). 136Dunah AW,Jeong H,Griffin A,Kim YM,Standaert DG,Hersch SM,Mouradian MM,Young AB,Tanese N,Krainc D
  5. 137Friebe A,Koesling D (1998a) Mechanism of YC-1-Induced Activation of Soluble Guanylyl Cyclase.
  6. (2005). 138Ghosh J,Murphy MO,Turner N,Khwaja N,Halka A,Kielty CM,Walker MG
  7. (1969). 140Ishikawa E,Ishikawa S,Davis JW,Sutherland EW
  8. (2000). 141King PH,Fuller JJ,Nabors LB,Detloff PJ
  9. (2001). 142Krumenacker JS,Hyder SM,Murad F
  10. (1996). 143Lin SY,Black AR,Kostic D,Pajovic S,Hoover CN,Azizkhan JC
  11. (2001). 144Marques M,Millas I,Jimenez A,Garcia-Colis E,Rodriguez-Feo JA,Velasco S,Barrientos A,Casado S,Lopez-Farre A
  12. (1977). 145Mittal CK,Kimura H,Murad F (1977b) Purification and Properties of a Protein Required for Sodium Azide Activation of Guanylate Cyclase.
  13. (2002). 146Naar AM,Taatjes DJ,Zhai W,Nogales E,Tjian R
  14. (1989). 148Rees DD,Palmer RM,Moncada S
  15. (2002). 149Schmitt C,Tonnelle C,Dalloul A,Chabannon C,Debre P,Rebollo A
  16. (1995). 150Sinha S,Maity SN,Lu J,de Crombrugghe B
  17. (1994). 152Ujiie K,Hogarth L,Danziger R,Drewett JG,Yuen PS,Pang IH,Star RA
  18. (2000). 153Wang W,Caldwell MC,Lin S,Furneaux H,Gorospe M
  19. (1995). 154Wu CC,Ko FN,Kuo SC,Lee FY,Teng CM
  20. (1977). 2nd,Boman BM,Newman D,Goldberg ND
  21. (1990). A
  22. (2003). A Functional Domain of the Alpha1 Subunit of Soluble Guanylyl Cyclase Is Necessary for Activation of the Enzyme by Nitric Oxide and YC-1 but Is Not Involved in Heme Binding.
  23. (1990). A New Form of Guanylyl Cyclase Is Preferentially Expressed in Rat Kidney.
  24. (1991). A Redox Switch and Phosphorylation Are Involved in the Post-Translational Up-Regulation of the Adenosine-Uridine Binding Factor by Phorbol Ester and Ionophore.
  25. (1993). A Serum Response Element and a Binding Site for
  26. (1997). Abi-Gerges N,Hove-Madsen L,Fischmeister R,Mery PF
  27. (1999). Activation of Soluble Guanylate Cyclase by Carbon Monoxide and Nitric Oxide: a Mechanistic Model. Methods 19:
  28. (2003). Akool el-S,Kleinert H,Hamada FM,Abdelwahab MH,Forstermann U,Pfeilschifter J,Eberhardt W
  29. (2004). Andreeva V,Prudovsky I,Thomas M
  30. (2000). Andreopoulos S,Papapetropoulos A
  31. Andric SA,Kostic TS,Tomic M,Koshimizu T,Stojilkovic SS (2001) Dependence of Soluble Guanylyl Cyclase Activity on Calcium Signaling in Pituitary Cells.
  32. (1977). Arnold WP,Mittal CK,Katsuki S,Murad F
  33. (1963). Ashman DF,Lipton R,Melicow MM,Price TD
  34. (1995). AU-Rich Elements: Characterization and Importance in mRNA Degradation.
  35. (1998). Autocrine Regulation of Inducible Nitric-Oxide Synthase in Macrophages by Atrial Natriuretic Peptide .
  36. (1994). AUUUA Is Not Sufficient to Promote Poly(A) Shortening and Degradation of an mRNA: the Functional Sequence Within AU-Rich Elements May Be UUAUUUA(U/A)(U/A).
  37. (1998). Azam M,Gupta G,Chen W,Wellington S,Warburton D,Danziger RS
  38. (2005). Balashova N,Chang FJ,Lamothe M,Sun Q,Beuve A
  39. (2002). Baltrons MA,Pedraza CE,Heneka MT,Garcia A
  40. (1998). Bauersachs J,Bouloumie A,Fraccarollo D,Hu K,Busse R,Ertl G
  41. (2001). Bauersachs J,Fleming I,Fraccarollo D,Busse R,Ertl G
  42. (1995). Behrends S,Harteneck C,Schultz G,Koesling D
  43. (2001). Behrends S,Kempfert J,Mietens A,Koglin M,Scholz H,Middendorff R
  44. (2002). Behrends S,Mietens A,Kempfert J,Koglin M,Scholz H,Middendorff R
  45. (1999). Biel M,Zong X,Ludwig A,Sautter A,Hofmann F
  46. (1999). Billon N,Carlisi D,Datto MB,van Grunsven LA,Watt A,Wang XF,Rudkin BB
  47. (1995). Block of Cyclic Nucleotide-Gated Channels in Salamander Olfactory Receptor Neurons by the Guanylyl Cyclase Inhibitor LY83583.
  48. (1991). Blume SW,Snyder RC,Ray R,Thomas S,Koller CA,Miller DM
  49. (1992). Bohjanen PR,Petryniak B,June CH,Thompson CB,Lindsten T
  50. (1978). Bohme E,Graf H,Schultz G
  51. (2000). Brandes RP,Kim D,Schmitz-Winnenthal FH,Amidi M,Godecke A,Mulsch A,Busse R
  52. (2002). Brioni JD,Nakane M,Hsieh GC,Moreland RB,Kolasa T,Sullivan JP (2002) Activators of Soluble Guanylate Cyclase for the Treatment of Male Erectile Dysfunction.
  53. (1991). Brown MR,Vaughan J,Jimenez LL,Vale W,Baird A
  54. (1996). Brunner F,Schmidt K,Nielsen EB,Mayer B
  55. (1995). Burstyn JN,Yu AE,Dierks EA,Hawkins BK,Dawson JH
  56. (2004). C,Young BA,Coleman CS,Pegg AE,Sheppard D
  57. (1999). Caccone A,Garcia BA,Mathiopoulos KD,Min GS,Moriyama EN,Powell JR
  58. Campos AH,Wang W,Pollman MJ,Gibbons GH (2002) Determinants of Notch-3 Receptor Expression and Signaling in Vascular Smooth Muscle Cells: Implications in Cell-Cycle Regulation. Circ Res 91:
  59. (1998). Carballo E,Lai WS,Blackshear PJ
  60. (2002). Carbon Monoxide Relaxes the Female Pig Urethra As Effectively As Nitric Oxide in the Presence of YC-1.
  61. (2000). Carvajal JA,Germain AM,Huidobro-Toro JP,Weiner CP
  62. (2000). Cell Cycle Regulation and RNA Polymerase II.
  63. (2001). Cernuda-Morollón,Manuela Díaz-Cazorla,Fernando Rodríguez-Pascual,and Santiago Lamas
  64. (1991). Chhajlani V,Frandberg PA,Ahlner J,Axelsson KL,Wikberg JE
  65. (1975). Chrisman TD,Garbers DL,Parks MA,Hardman JG
  66. (1993). Cloning and Expression of a Novel Cyclic GMP-Dependent Protein Kinase From Mouse Brain.
  67. (1995). Cloning of an Intrinsic Human TFIID Subunit That Interacts With Multiple Transcriptional Activators. Science 267:
  68. (1997). Cyclic Nucleotide-Gated Channels and Calcium: an Intimate Relation.
  69. (2001). D,Brouwer A,Korving J,Reijnen MJ,van Raaij EJ,Verbeek F,Gaffield W,Meijlink F
  70. (2000). Denninger JW,Schelvis JP,Brandish PE,Zhao Y,Babcock GT,Marletta MA
  71. (1969). Detection of Guanyl Cyclase in Mammalian Tissues.
  72. (1997). Differential Effects of Isoliquiritigenin and YC-1 in Rat Aortic Smooth Muscle.
  73. (1999). Dimmeler S,Fleming I,Fisslthaler B,Hermann C,Busse R,Zeiher AM
  74. (1993). E,Malter JS,Arrick BA,Rigby WF
  75. (2002). Ehsan A,Sommer F,Schmidt A,Klotz T,Koslowski J,Niggemann S,Jacobs G,Engelmann U,Addicks K,Bloch W
  76. (1983). Endothelium-Dependent and NitrovasodilatorInduced Relaxation of Vascular Smooth Muscle: Role of Cyclic GMP.
  77. (1989). Endothelium-Derived Relaxing and Contracting Factors.
  78. Es wurden die 3000 bp der 5´ upstream Region des Gens der α-1 sGCUntereinheit isoliert und mit Hilfe von Luziferase-Reporter-Konstrukten -Alpha3000 (mit -2794 bp),
  79. (1993). Evidence for Physical Interaction Between the Zinc-Finger Transcription Factors
  80. (1974). Evidence for Two Different Forms of Guanylate Cyclase in Rat Heart.
  81. (1991). Expression of Soluble Guanylate Cyclase Activity Requires Both Enzyme Subunits.
  82. Fan XC,Steitz JA (1998b) HNS, a Nuclear-Cytoplasmic Shuttling Sequence in HuR.
  83. (1999). Feelisch M,Kotsonis P,Siebe J,Clement B,Schmidt HH
  84. (1997). Filippov G,Bloch DB,Bloch KD
  85. (1996). Foerster J,Harteneck C,Malkewitz J,Schultz G,Koesling D
  86. (1986). Forstermann U,Mulsch A,Bohme E,Busse R
  87. (1958). Fractionation and Characterization of a Cyclic Adenine Ribonucleotide Formed by Tissue Particles.
  88. (2003). Friebe A,Koesling D
  89. Friebe A,Mullershausen F,Smolenski A,Walter U,Schultz G,Koesling D (1998b) YC-1 Potentiates Nitric Oxide- and Carbon Monoxide-Induced Cyclic GMP Effects in Human Platelets.
  90. (1996). Friebe A,Schultz G,Koesling D
  91. (1997). Friebe A,Wedel B,Harteneck C,Foerster J,Schultz G,Koesling D
  92. (2000). Gallouzi IE,Brennan CM,Stenberg MG,Swanson MS,Eversole A,Maizels N,Steitz JA
  93. Garg R,Oliver PM,Maeda N,Pandey KN (2002) Genomic Structure, Organization, and Promoter Region Analysis of Murine Guanylyl Cyclase/Atrial Natriuretic Peptide Receptor-A Gene. Gene 291:
  94. (1995). Garthwaite J,Southam E,Boulton CL,Nielsen EB,Schmidt K,Mayer B
  95. (1994). Giuili G,Luzi A,Poyard M,Guellaen G
  96. (1993). Giuili G,Roechel N,Scholl U,Mattei MG,Guellaen G
  97. (1992). Giuili G,Scholl U,Bulle F,Guellaen G
  98. (1995). Glyceraldehyde-3-Phosphate Dehydrogenase Selectively Binds AU-Rich RNA in the NAD(+)-Binding Region (Rossmann Fold).
  99. (2000). GM,Kazerounian S,Ruiz-Stewart I,Park J,Schulz S,Chepenik KP,Waldman SA
  100. (1969). Guanyl Cyclase, an Enzyme Catalyzing the Formation of Guanosine 3',5'-Monophosphate From Guanosine Trihosphate.
  101. (1999). Guanylate Cyclase and the .NO/cGMP Signaling Pathway. Biochim Biophys Acta 1411:
  102. (1974). Guanylate Cyclase From Sperm of the Sea Urchin, Strongylocentrotus Purpuratus. Methods Enzymol 38:
  103. (1999). Gueydan C,Droogmans L,Chalon P,Huez G,Caput D,Kruys V
  104. (1997). Gupta G,Azam M,Yang L,Danziger RS
  105. (1995). H,Meyer-Monard S,Hofsteenge J,Jeno P,Moroni C
  106. (2001). H,Thomson AJ,Norman JE,Nakao K,Campa JS,Poston L,Tribe RM,Magness RR
  107. (1990). Haem-Dependent Activation of Guanylate Cyclase and Cyclic GMP Formation by Endogenous Nitric Oxide: a Unique Transduction Mechanism for Transcellular Signaling. Pharmacol Toxicol 67:
  108. Hallen K,Olgart C,Gustafsson LE,Wiklund NP (2001) Modulation of Neuronal Nitric Oxide Release by Soluble Guanylyl Cyclase in Guinea Pig Colon.
  109. (2004). Hanafy KA,Martin E,Murad F
  110. (1990). Harteneck C,Koesling D,Soling A,Schultz G,Bohme E
  111. (1991). Harteneck C,Wedel B,Koesling D,Malkewitz J,Bohme E,Schultz G
  112. (2003). Harumi T,Watanabe T,Yamamoto T,Tanabe Y,Suzuki N
  113. Hedlund P,Aszodi A,Pfeifer A,Alm P,Hofmann F,Ahmad M,Fassler R,Andersson KE (2000) Erectile Dysfunction in Cyclic GMP-Dependent Kinase I-Deficient Mice.
  114. (1990). Huijsduijnen R,Li XY,Black D,Matthes H,Benoist C,Mathis D
  115. (1999). Hwang TL,Wu CC,Teng CM
  116. (2001). Ibarra C,Nedvetsky PI,Gerlach M,Riederer P,Schmidt HH
  117. (1995). Identification of Sequences Mediating Guanylyl Cyclase Dimerization.
  118. (1986). Ignarro LJ,Adams JB,Horwitz PM,Wood KS
  119. (1987). Ignarro LJ,Buga GM,Wood KS,Byrns RE,Chaudhuri G
  120. (1975). Increased Particulate and Decreased Soluble Guanylate Cyclase Activity in Regenerating Liver, Fetal Liver, and Hepatoma.
  121. (2001). Isabelle Mercier and Angelino Calderone
  122. (1995). Isolation and Characterization of a Novel, Low Abundance HnRNP Protein:
  123. Jamali M,Rogerson PJ,Wilton S,Skerjanc IS (2001) Nkx2-5 Activity Is Essential for Cardiomyogenesis.
  124. (1994). Jarchau T,Hausler C,Markert T,Pohler D,Vanderkerckhove J,De Jonge HR,Lohmann SM,Walter U
  125. (2001). JC,Huang LJ,Huang TM,Tsai SC,Teng CM,Wu CC,Cheng FC,Kuo SC
  126. (2001). Kagota S,Tamashiro A,Yamaguchi Y,Sugiura R,Kuno T,Nakamura K,Kunitomo M
  127. (1986). Kamisaki Y,Saheki S,Nakane M,Palmieri JA,Kuno T,Chang BY,Waldman SA,Murad F
  128. Kazerounian S,Pitari GM,Ruiz-Stewart I,Schulz S,Waldman SA (2002) Nitric Oxide Activation of Soluble Guanylyl Cyclase Reveals High and Low Affinity Sites That Mediate Allosteric Inhibition by Calcium.
  129. (1976). Kimura H,Mittal CK,Murad F
  130. Kintscher U,Lyon C,Wakino S,Bruemmer D,Feng X,Goetze S,Graf K,Moustakas A,Staels B,Fleck E,Hsueh WA,Law
  131. (2000). Kloss S,Bouloumie A,Mulsch A
  132. (2003). Kloss S,Furneaux H,Mulsch A
  133. (2005). Kloss S,Rodenbach D,Bordel R,Mulsch A
  134. (2004). Kloss S,Srivastava R,Mulsch A
  135. (1999). Koesling D,Friebe A
  136. (1990). Koesling D,Harteneck C,Humbert P,Bosserhoff A,Frank R,Schultz G,Bohme E
  137. (1988). Koesling D,Herz J,Gausepohl H,Niroomand F,Hinsch KD,Mulsch A,Bohme E,Schultz G,Frank R
  138. (2001). Koglin M,Vehse K,Budaeus L,Scholz H,Behrends S
  139. (2002). Laber U,Kober T,Schmitz V,Schrammel A,Meyer W,Mayer B,Weber M,Kojda G
  140. (1997). Lenny N,Westendorf JJ,Hiebert SW
  141. (1993). Levine TD,Gao F,King PH,Andrews LG,Keene JD
  142. Liang F,Schaufele F,Gardner DG (2001) Functional Interaction of NF-Y and Sp1 Is Required for Type a Natriuretic Peptide Receptor Gene Transcription.
  143. (1997). Liu H,Force T,Bloch KD
  144. (1997). Localization of the Heme Binding Region in Soluble Guanylate Cyclase.
  145. (1997). Lohmann SM,Vaandrager AB,Smolenski A,Walter U,De Jonge HR
  146. (1995). Long-Term Depression: a Learning-Related Type of Synaptic Plasticity in the Mammalian Central Nervous System. Rev Neurosci 6:
  147. (1992). M,van Baal S,Wiegant J,Raap A,Hagemeijer A,Grosveld G
  148. (1996). Ma WJ,Cheng S,Campbell C,Wright A,Furneaux H
  149. (1992). Maity SN,Sinha S,Ruteshouser EC,de Crombrugghe B
  150. (1990). Maity SN,Vuorio T,de Crombrugghe B
  151. (1990). Malek SN,Katumuluwa AI,Pasternack GR
  152. (1997). Marin M,Karis A,Visser P,Grosveld F,Philipsen S
  153. (1988). Marletta MA,Yoon PS,Iyengar R,Leaf CD,Wishnok JS
  154. (2004). Matricellular Proteins in the Heart: Possible Role During Stress and Remodeling. Cardiovasc Res 64:
  155. (1995). McCoy DE,Guggino SE,Stanton BA
  156. (1998). Mechanism for the Suppression of the Mammalian Stress Response by Genistein, an Anticancer Phytoestrogen From Soy.
  157. (1998). Mencinger M,Panagopoulos I,Contreras JA,Mitelman F,Aman P
  158. Meurer S,Pioch S,Wagner K,Muller-Esterl W,Gross S (2004) AGAP1, a Novel Binding Partner of Nitric Oxide-Sensitive Guanylyl Cyclase.
  159. (1993). Mikhail N,Fukuda N,Tremblay J,Hamet P
  160. Miller LN,Nakane M,Hsieh GC,Chang R,Kolasa T,Moreland RB,Brioni JD (2003) A-350619: a Novel Activator of Soluble Guanylyl Cyclase. Life Sci 72:
  161. (1999). Millward TA,Zolnierowicz S,Hemmings BA
  162. (1997). Misaka T,Kusakabe Y,Emori Y,Gonoi T,Arai S,Abe K
  163. Mittal CK,Murad F (1977a) Formation of Adenosine 3':5'-Monophosphate by Preparations of Guanylate Cyclase From Rat Liver and Other Tissues.
  164. (1996). Molecular Identification of I1PP2A, a Novel Potent Heat-Stable Inhibitor Protein of Protein Phosphatase 2A.
  165. (1995). Molecular Mechanisms and Therapeutic Strategies Related to Nitric Oxide.
  166. (1991). Moncada S,Palmer RM,Higgs EA
  167. (2003). Moon SK,Jung SY,Choi YH,Lee YC,Kim CH
  168. (1996). Moro MA,Russel RJ,Cellek S,Lizasoain I,Su Y,Darley-Usmar VM,Radomski MW,Moncada S
  169. (1995). mRNA Stability in Mammalian Cells.
  170. (1997). Mulsch A,Bauersachs J,Schafer A,Stasch JP,Kast R,Busse R
  171. (2001). Mulsch A,Oelze M,Kloss S,Mollnau H,Topfer A,Smolenski A,Walter U,Stasch JP,Warnholtz A,Hink U,Meinertz T,Munzel T
  172. (1984). Multiple Specific Contacts Between a Mammalian Transcription Factor and Its Cognate Promoters.
  173. (1975). Murad F,Kimura H,Hopkins HA,Looney WB,Kovacs CJ
  174. (1987). Murad F,Waldman S,Molina C,Bennett B,Leitman D
  175. (1985). Mutant Alleles at the Locus Elav in Drosophila Melanogaster Lead to Nervous System Defects. A Developmental-Genetic Analysis.
  176. (1990). Nakane M,Arai K,Saheki S,Kuno T,Buechler W,Murad F
  177. (1988). Nakane M,Saheki S,Kuno T,Ishii K,Murad F
  178. (1995). Nitric Oxide and cGMP Signaling.
  179. (1987). Nitric Oxide Release Accounts for the Biological Activity of Endothelium-Derived Relaxing Factor.
  180. (1995). Nitric Oxide Synthases: Properties and Catalytic Mechanism. Annu Rev Physiol 57:
  181. (1989). Nitric Oxide Synthesised From LArginine Mediates Endothelium Dependent Dilatation in Human Veins in Vivo.
  182. (1982). Ohlstein EH,Wood KS,Ignarro LJ
  183. (1998). Olesen SP,Drejer J,Axelsson O,Moldt P,Bang L,Nielsen-Kudsk JE,Busse R,Mulsch A
  184. (2002). On the Activation of Soluble Guanylyl Cyclase by Nitric Oxide.
  185. (1998). Overexpression of HuR, a Nuclear-Cytoplasmic Shuttling Protein, Increases the in Vivo Stability of ARE-Containing mRNAs.
  186. (1994). P,Harteneck C,Foerster J,Malkewitz J,Bohme E,Schultz G,Koesling D
  187. (1992). PA,Li GK,Tempst P,Michel T
  188. Papapetropoulos A,Abou-Mohamed G,Marczin N,Murad F,Caldwell RW,Catravas JD (1996a) Downregulation of Nitrovasodilator-Induced Cyclic
  189. Papapetropoulos A,Go CY,Murad F,Catravas JD (1996b) Mechanisms of Tolerance to Sodium Nitroprusside in Rat Cultured Aortic Smooth Muscle Cells.
  190. (1995). Papapetropoulos A,Marczin N,Mora G,Milici A,Murad F,Catravas J
  191. (2005). Papapetropoulos A,Zhou Z,Gerassimou C,Yetik G,Venema RC,Roussos C,Sessa WC,Catravas JD
  192. (1999). Parkinson SJ,Jovanovic A,Jovanovic S,Wagner F,Terzic A,Waldman SA
  193. Pedraza CE,Baltrons MA,Heneka MT,Garcia A (2003) Interleukin-1 Beta and Lipopolysaccharide Decrease Soluble Guanylyl Cyclase in Brain Cells: NOIndependent Destabilization of Protein and NO-Dependent Decrease of mRNA.
  194. (1998). Peng SS,Chen CY,Xu N,Shyu AB
  195. (1996). Peroxynitrite Formed by Simultaneous Generation of Nitric Oxide and Superoxide Selectively Inhibits Bovine Aortic Prostacyclin Synthase.
  196. (1998). Pfeifer A,Klatt P,Massberg S,Ny L,Sausbier M,Hirneiss C,Wang GX,Korth M,Aszodi A,Andersson KE,Krombach F,Mayerhofer A,Ruth P,Fassler R,Hofmann F
  197. (1989). Physiological Role of cGMP and cGMP-Dependent Protein Kinase in the Cardiovascular System. Rev Physiol Biochem Pharmacol ; 113:
  198. (2003). Polyamine Dependence of Normal Cell-Cycle Progression.
  199. (1976). Properties and Subcellular Distribution of Guanylate Cyclase Activity in Rat Renal Medulla: Correlation With Tissue Content of Guanosine 3',5'-Monophosphate.
  200. (2000). Protein Ligands to HuR Modulate Its Interaction With Target mRNAs in Vivo.
  201. (2005). Pyriochou A,Papapetropoulos A
  202. Rahmutula D,Cui J,Chen S,Gardner DG (2004) Transcriptional Regulation of Type B Human Natriuretic Peptide Receptor Gene Promoter: Dependence on Sp1. Hypertension 44:
  203. (2003). Regulation of Gene Expression by Cyclic GMP.
  204. (1988). Removal of Poly(A) and Consequent Degradation of C-Fos mRNA Facilitated by 3' AU-Rich Sequences.
  205. (1978). Restoration of the Responsiveness of Purified Guanylate Cyclase to Nitrosoguanidine, Nitric Oxide, and Related Activators by Heme and Hemeproteins. Evidence for Involvement of the Paramagnetic Nitrosyl-Heme Complex in Enzyme Activation.
  206. (1999). Roder K,Wolf SS,Larkin KJ,Schweizer M
  207. (2000). Rothermund L,Friebe A,Paul M,Koesling D,Kreutz R
  208. (1999). Ruetten H,Zabel U,Linz W,Schmidt HH
  209. (1998). Russwurm M,Behrends S,Harteneck C,Koesling D
  210. (1999). Ryu S,Zhou S,Ladurner AG,Tjian R
  211. (1994). S,Beato M,Suske G
  212. (1999). Saito S,Miyaji-Yamaguchi M,Shimoyama T,Nagata K
  213. (2000). Sausbier M,Schubert R,Voigt V,Hirneiss C,Pfeifer A,Korth M,Kleppisch T,Ruth P,Hofmann F
  214. (1998). Schelvis JP,Zhao Y,Marletta MA,Babcock GT
  215. (1996). Schrammel A,Behrends S,Schmidt K,Koesling D,Mayer B
  216. (1969). Schultz G,Bohme E,Munske K
  217. (1999). Second Messenger Role for NO Widens to Nervous and Immune Systems. Trends Pharmacol Sci 10:
  218. (1993). Seto E,Lewis B,Shenk T
  219. (2000). Sharina IG,Krumenacker JS,Martin E,Murad F
  220. (2003). Sharina IG,Martin E,Thomas A,Uray KL,Murad F
  221. (1993). Shimouchi A,Janssens SP,Bloch DB,Zapol WM,Bloch KD
  222. (1998). Sinha B,Eigler A,Baumann KH,Greten TF,Moeller J,Endres S
  223. (1994). Soluble Guanylate Cyclase From Bovine Lung: Activation With Nitric Oxide and Carbon Monoxide and Spectral Characterization of the Ferrous and Ferric States.
  224. (1999). Soluble Guanylate Cyclase Gene Expression and Localization in Rat Lung After Exposure to Hypoxia.
  225. (1997). Soluble Guanylate Cyclase: the Forgotten Sibling.
  226. (1993). Spermidine/Spermine N1-Acetyltransferase--the Turning Point in Polyamine Metabolism.
  227. Stasch JP,Alonso-Alija C,Apeler H,Dembowsky K,Feurer A,Minuth T,Perzborn E,Schramm M,Straub A (2002a) Pharmacological Actions of a Novel NOIndependent Guanylyl Cyclase Stimulator, BAY 41-8543: in Vitro Studies.
  228. (2001). Straub A,Stasch JP,Alonso-Alija C,Benet-Buchholz J,Ducke B,Feurer A,Furstner C
  229. (2002). Stress Granules: Sites of mRNA Triage That Regulate MRNA Stability and Translatability. Biochem Soc Trans 30:
  230. (1999). Studying the Structure and Regulation of Soluble Guanylyl Cyclase.
  231. (1998). Sunahara RK,Beuve A,Tesmer JJ,Sprang SR,Garbers DL,Gilman AG
  232. (1998). Synergistic Activation of Soluble Guanylate Cyclase by YC-1 and Carbon Monoxide: Implications for the Role of Cleavage of the Iron-Histidine Bond During Activation by Nitric Oxide.
  233. Taatjes DJ,Naar AM,Andel F 3rd,Nogales E,Tjian (2002) Structure, Function,
  234. (2001). Takata M,Filippov G,Liu H,Ichinose F,Janssens S,Bloch DB,Bloch KD
  235. (1996). Tamura N,Itoh H,Ogawa Y,Nakagawa O,Harada M,Chun TH,Suga S,Yoshimasa T,Nakao K
  236. (1999). Tandem Organization of Medaka Fish Soluble Guanylyl Cyclase Alpha1 and Beta1 Subunit Genes. Implications for Coordinated Transcription of Two Subunit Genes.
  237. (1996). Tanese N,Saluja D,Vassallo MF,Chen JL,Admon A
  238. Tanner FC,Meier P,Greutert H,Champion C,Nabel EG,Luscher TF (2000) Nitric Oxide Modulates Expression of Cell Cycle Regulatory Proteins: a Cytostatic Strategy for Inhibition of Human Vascular Smooth Muscle Cell Proliferation. Circulation 101:
  239. (1993). Template Activating Factor I, a Novel Host Factor Required to Stimulate the Adenovirus Core DNA Replication.
  240. (1997). Teng CM,Wu CC,Ko FN,Lee FY,Kuo SC
  241. (1996). The Alpha 1 Subunit of Soluble Guanylyl Cyclase Is Expressed Prenatally
  242. (1990). The Guanylyl Cyclase Receptor Family.
  243. (1999). The Molecular Biology of the CCAAT-Binding Factor NF-Y.
  244. (1993). The Nitric Oxide and cGMP Signal Transduction System: Regulation and Mechanism of Action. Biochim Biophys Acta 1178:
  245. (1983). The Promoter-Specific Transcription Factor
  246. (1999). The Sp-Family of Transcription Factors.
  247. (2003). Transcriptional Regulation of the Human Sp1 Gene Promoter by the Specificity Protein (Sp) Family Members Nuclear Factor Y (NF-Y) and E2F.
  248. (1995). Two Drosophila Genes That Encode the Alpha and Beta Subunits of the Brain Soluble Guanylyl Cyclase.
  249. (1975). Two Forms of Guanylate Cyclase in Mammalian Tissues and Possible Mechanisms for Their Regulation. Metabolism 24:
  250. (2001). Tzao C,Nickerson PA,Russell JA,Gugino SF,Steinhorn RH
  251. (1999). U,Hubner U,Hatzelmann A,Wagner B,Wanner C,Schmidt HH
  252. (1997). Vaandrager AB,Tilly BC,Smolenski A,Schneider-Rasp S,Bot AG,Edixhoven M,Scholte BJ,Jarchau T,Walter U,Lohmann SM,Poller WC,de Jonge HR
  253. (1982). Vascular Endothelial Cell Effectors in Fetal Calf Retina, Vitreous, and Serum.
  254. (2004). Vazquez-Padron RI,Pham SM,Pang M,Li S,Aitouche A
  255. (1990). Vuorio T,Maity SN,de Crombrugghe B
  256. (1997). Wadman IA,Osada H,Grutz GG,Agulnick AD,Westphal H,Forster A,Rabbitts TH
  257. (1985). Waldman SA,Rapoport RM,Fiscus RR,Murad F
  258. Wamhoff BR,Hoofnagle MH,Burns A,Sinha S,McDonald OG,Owens GK (2004) A G/C Element Mediates Repression of the SM22alpha Promoter Within Phenotypically Modulated Smooth Muscle Cells in Experimental Atherosclerosis. Circ Res 95:
  259. (1994). Warner TD,Mitchell JA,Sheng H,Murad F
  260. (1995). Wedel B,Harteneck C,Foerster J,Friebe A,Schultz G,Koesling D
  261. (1999). Weitmann S,Wursig N,Navarro JM,Kleuss C
  262. (2000). White CR,Hao X,Pearce WJ
  263. (1999). Wohlfart P,Malinski T,Ruetten H,Schindler U,Linz W,Schoenafinger K,Strobel H,Wiemer G
  264. (1995). Wright KL,Moore TL,Vilen BJ,Brown AM,Ting JP
  265. (1997). XC,Steitz JA
  266. (2000). Xiao H,Hasegawa T,Isobe K
  267. (2003). Yamamoto T,Yao Y,Harumi T,Suzuki N
  268. (2003). Yao Y,Yamamoto T,Tsutsumi M,Matsuda M,Hori H,Naruse K,Mitani H,Shima A,Asakawa S,Shimizu N,Suzuki N
  269. (1996). Yu F,Warburton D,Wellington S,Danziger RS
  270. (1994). YZ,Anderson PG,Chen J,Accavitti MA,Tarpey MM,White CR
  271. (1999). Zabel U,Hausler C,Weeger M,Schmidt HH
  272. (1993). Zhang W,Wagner BJ,Ehrenman K,Schaefer AW,DeMaria CT,Crater D,DeHaven K,Long L,Brewer G
  273. (2000). Zhao Y,Brandish PE,DiValentin M,Schelvis JP,Babcock GT,Marletta MA
  274. (1998). Zhou JR,Mukherjee P,Gugger ET,Tanaka T,Blackburn GL,Clinton SK
  275. (2004). Zhou Z,Gross S,Roussos C,Meurer S,Muller-Esterl W,Papapetropoulos A

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.