Article thumbnail

Water retention soil estimate using nonconventional equipment, artificial neural networks and pedotransfer functions

By Antonio Angelotti Netto

Abstract

O desenvolvimento econômico e o aumento da produtividade agrícola intensificaram o uso de produtos químicos nas lavouras. Quando se pretende quantificar o impacto ambiental de tal uso é necessário empregar modelos que descrevam o fluxo de água e solutos na região não saturada do solo. Para esse fim, um dos parâmetros mais eficazes é conhecer a retenção de água no solo. O objetivo deste trabalho foi desenvolver funções de pedotransferência (FPTs) que estimassem a partir de análise em redes neurais artificiais (RNAs) a retenção de água nos solos da microbacia hidrográfica do ribeirão Canchim, município de São Carlos, SP. Os atributos físicos, textura (argila, silte e areia), densidade e resistência à penetração dos solos: LVAd, LVe, LVdf e NVef, manejados com e sem cobertura vegetal e sob mata foram determinados com equipamentos não convencionais na Embrapa Instrumentação Agropecuária em São Carlos, SP. Esses parâmetros foram utilizados como variáveis de entrada nas duas redes neurais artificiais. Foram obtidas, ainda, as curvas de retenção de água no solo por meio da câmara de pressão de Richards e da tomografia computadorizada, além da porosidade total e da condutividade hidráulica não saturada. O analisador granulométrico de solos e o penetrômetro associado a TDR possibilitaram a obtenção de um grande número de dados. Os atributos físicos dos solos apresentaram grande variabilidade em função da constituição granulométrica e manejos adotados. As RNAs foram eficientes no desenvolvimento de FPTs capazes de estimar a retenção de água com base em propriedades básicas de solo obtidas em grande número.Economic development and increasing agricultural productivity have intensified the use of chemical products in farming. The quantification environmental impact of these products requires the use of models that describe the flow of water and solutes in the unsaturated region of the soil. For this purpose, one of the most effective parameters belong to the water retention curve of the soil. The purpose of this work was to develop pedotransfer functions (PTFs) to estimate the retention of water by soils of the hydrographic microbasin of the Canchim river, in the municipality of São Carlos, state of São Paulo, Brazil, based on artificial neural networks (ANNs). The physical attributes, granulometry (clay, silt and sand), density and resistance to penetration of LVAd, LVe, LVdf and NVef soils, managed with and without vegetal cover and under forest, were determined using nonconventional equipment at Embrapa Instrumentação Agropecuária in São Carlos, SP. These parameters were used as input variables for two artificial neural networks. The soils\' water retention curves were also obtained using a Richards pressure chamber and computed tomography, as well as their total porosity and unsaturated hydraulic conductivity. A soil granulometric analyzer and a penetrometer allied to TDR provided a large number of data. The soils\' physical attributes displayed a wide variability as a function of their granulometric constitution and adopted managements. The ANNs were effective in developing PTFs able to estimate the water retention based on the large number of basic soil properties

Topics: Analisador granulométrico, Retenção de água no solo, Reflectometria no domínio do tempo, Redes neurais artificiais, Penetrômetro, Tomografia computadorizada, Penetrometer, Granulometry, Computed tomography, Artificial neural networks, Soil water retention, Time domain reflectometry (TDR)
Publisher: 'Universidade de Sao Paulo, Agencia USP de Gestao da Informacao Academica (AGUIA)'
Year: 2008
DOI identifier: 10.11606/T.18.2007.tde-07042008-140003
OAI identifier: oai:teses.usp.br:tde-07042008-140003
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.teses.usp.br/teses/... (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles