Alternating-gradient focusing of the benzonitrile-argon van der Waals complex

Abstract

We report on the focusing and guiding of the van der Waals complex formed between benzonitrile molecules (C(6)H(5)CN) and argon atoms in a cold molecular beam using an ac electric quadrupole guide. The distribution of quantum states in the guided beam is non-thermal, because the transmission efficiency depends on the state-dependent effective dipole moment in the applied electric fields. At a specific ac frequency, however, the excitation spectrum can be described by a thermal distribution at a rotational temperature of 0.8 K. From the observed transmission characteristics and a combination of trajectory and Stark-energy calculations we conclude that the permanent electric dipole moment of benzonitrile remains unchanged upon the attachment of the argon atom to within ±5%. By exploiting the different dipole-moment-to-mass ([micro sign]/m) ratios of the complex and the benzonitrile monomer, transmission can be selectively suppressed for or, in the limit of 0 K rotational temperature, restricted to the complex

Similar works

Full text

thumbnail-image

DESY Publication Database

redirect
Last time updated on 27/08/2013

This paper was published in DESY Publication Database.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.