Location of Repository

Reinforced memory network for question answering

By A. Nugaliyadde, K.W. Wong, F. Sohel and H. Xie

Abstract

Deep learning techniques have shown to perform well in Question Answering (QA) tasks. We present a framework that combines Memory Network (MN) and Reinforcement Learning (Q-learning) to perform QA, termed Reinforced MN (R-MN). We investigate the proposed framework by the use of Long Short Term Memory Network (LSTM) and Dynamic Memory Network (DMN). We call them Reinforced LSTM (R-LSTM) and Reinforced DMN (R-DMN), respectively. The input text sequence and question are passed to both MN and Q-Learning. The output of the MN is then fed to Q-Learning as a second input for refinement. The R-MN is trained end-to-end. We evaluated R-MNs on the bAbI 1 K QA dataset for all of the 20 tasks. We achieve superior performance when compared to conventional method of RL, LSTM and the state of the art technique, DMN. Using only half of the training data, both R-LSTM and R-DMN achieved all of the bAbI tasks with high accuracies. The experimental results demonstrated that the proposed framework of combining MN and Q-learning enhances the QA tasks while using less training data

Publisher: Springer Verlag
Year: 2017
OAI identifier: oai:researchrepository.murdoch.edu.au:39822
Provided by: Research Repository
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://researchrepository.murd... (external link)
  • http://researchrepository.murd... (external link)
  • http://researchrepository.murd... (external link)
  • http://researchrepository.murd... (external link)
  • http://researchrepository.murd... (external link)
  • http://researchrepository.murd... (external link)
  • http://researchrepository.murd... (external link)
  • http://researchrepository.murd... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.