Skip to main content
Article thumbnail
Location of Repository

Dynamic modelling of CO2 absorption for post combustion capture in coal-fired power plants

By Adekola Lawal, Meihong Wang, Peter Stephenson and Hoi Yeung

Abstract

Power generation from fossil fuel-fired power plants is the largest single source of CO2 emissions. Post combustion capture via chemical absorption is viewed as the most mature CO2 capture technique. This paper presents a study of the post combustion CO2 capture with monoethanolamine (MEA) based on dynamic modelling of the process. The aims of the project were to compare two different approaches (the equilibrium-based approach versus the rate-based approach) in modelling the absorber dynamically and to understand the dynamic behaviour of the absorber during part load operation and with disturbances from the stripper. A powerful modelling and simulation tool gPROMS was chosen to implement the proposed work. The study indicates that the rate-based model gives a better prediction of the chemical absorption process than the equilibrium-based model. The dynamic simulation of the absorber indicates normal absorber column operation could be maintained during part load operation by maintaining the ratio of the flow rates of the lean solvent and flue gas to the absorber. Disturbances in the CO2 loading of the lean solvent to the absorber significantly affect absorber performance. Further work will extend the dynamic modelling to the stripper for whole plant analysis

Topics: CO2 capture, Chemical absorption, Dynamic modelling, Coal-fired power plant
Publisher: Elsevier Science B.V., Amsterdam.
Year: 2009
DOI identifier: 10.1016/j.fuel.2008.11.009
OAI identifier: oai:dspace.lib.cranfield.ac.uk:1826/3826
Provided by: Cranfield CERES
Journal:

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.