Design study of piezoelectric micro-machined mechanically coupled cantilever filters using a combined finite element and microwave circuit analysis.

Abstract

A new mechanical filter structure is presented which comprises two silicon cantilevers mechanically coupled by a silicon linkage with thin film piezoelectric transducers providing electrical input and output signals. The resonance behaviour of such a structure results in a band-pass filter response, having a band-width determined by the frequency separation between the closely spaced in-phase and out-of-phase vibrational modes of the two coupled cantilevers. A detailed configuration design analysis, filter simulation and optimisation of performance is undertaken using a new modelling approach combining microwave circuit theory and finite element analysis to evaluate the generalised (A, B, C and D) and scattering (S) circuit parameters of the filter. Two significant features of the filters have emerged from the derived analyses and simulations: (1) with correct design filter Q-values can reach several thousand which is much higher than the Q-values (80) of uncoupled cantilevers, (2) the Q-value is determined by the configuration of the silicon linkage and so is under the designer's control. The position and length of the linkage that give optimum Q and minimum insertion loss are determined

Similar works

This paper was published in Cranfield CERES.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.