Skip to main content
Article thumbnail
Location of Repository

Development of a total Lagrangian SPH code for the simulation of solids under dynamioc loading

By Juan R. Reveles


This thesis makes use of an alternative SPH formulation, the Total Lagrangianf ormulation, to characterised ynamic eventsi n solids and to achieve the proposed objectives outlined in Chapter 1. The structure is as follows: Chapter 1, Introduction, describes the motivation for this research and outlines the objectives and the structure of this thesis. Chapter 2, SPH fundamentals, supplies the standard procedure to generate particle equations and provides a comprehensive summary of gradient approximation formulae in SPH. The discretised SPH form of the conservation laws is included here. Chapter 3, SPH drawbacks: describes the limitations of SPH such as particle deficiency, consistency, zero energy modes, treatment of boundaries and the tensile instability problem. A rigorous stability analysis of continua and SPH particle equations is also presented in this chapter. Chapter 4, Total Lagrangian SPH. Continuum Mechanics considerations are discussed here; detailed derivations of SPH equations in a total Lagrangian framework are given together with potential corrections to the total Lagrangian SPH equations. Chapter 5, Total Lagrangian SPH algorithms and their implementation using FORTRAN. This chapter gives a brief introduction to explicit codes. It also provides flow charts describing the Total Lagrangian algorithms and their integration into the MCM code. Chapter 6, Total Lagrangian SPH code validation. This chapter includes problems of varying degrees of complexity. Examples are provided to illustrate how the Total Lagrangian SPH code compares to a conventional collocational SPH code. Cases are supplied for which the analytical solution is known, and the results compared with the SPH approximations in order to show the accuracy of the approximation. Some examples are supplied which provide a direct comparison between SPH and non linear FE results and SPH and experimental results. Chapter 7, Alternative formulation of SPH equations and improvements to the standard MCM code: Various modifications to the standard SPH code are presented. These modifications include the implementation of subroutines that make use of an alternative approach to ensure the conservation of mass law is met locally at every particle. The introduction of XSPH to achieve further stabilisation of the code was also carried out and some examples are provided. The theory behind an alternative form of the conservation of mass equation as proposed by Belytschko [4] is explained and its implementation into the SPH code is assessed through examples. Also, an alternative formulation of SPH equations based on the general theory of mixed Lagrangian-Eulerian formulations [35] is presented: these equations could serve as the foundation for future research in this field. Chapter 8, Conclusions are presented in this chapter. A brief literature review is provided at the beginning of each chapter as a means of introduction to the topic and a concise summary outlines the main points discussed

Publisher: Cranfield University
Year: 2007
OAI identifier:
Provided by: Cranfield CERES

Suggested articles


  1. (2006). A frictionless contact algorithm for meshless methods.
  2. (2000). A treatment of zero-energy modes in the smoothed particle hydrodynamics method. doi
  3. (1994). An analysis of the smoothed particle hydrodynamics. Sandia Report doi
  4. (2005). Analysis of compressor blade behaviour under bird impact. Computational Methods for Coupled Problems in Science and Engineering
  5. APPENDIX SPH hi a Total Lagnmigimi Fi-mnework Rade V%xjevkl, Jiman R. Reveleol, James CampbeU1 A16stmct To correct some of the main shortcomings of conventional SPK a version of this method based on, the Total LagrangLan formalism
  6. (2004). Attaway(1995) often called tensile instability.
  7. (2005). Computational Methods for Coupled Problems in Science and Engineering doi
  8. (2005). Development of a Total Lagrangian SPH code for the simulation of solids under dynamic loading conditions,
  9. (2005). European Conference on Spacecraft Structures, Materials and Mechanical Testing, Numerical Simulation of Debris Impact on Thin Walled Metal
  10. (1990). High Velocity Impact Dynamics.
  11. I Campbdl Crashworthness, Impact and SY7uctural Mechiviies; (CISA9,
  12. llrw (&mete[ com Phone:
  13. (2005). Numerical Simulation offailure in Metals Based on Irreversible Thermodynamics,
  14. (2004). Open Presentations at Cranfield University 1. - Workshop on Computational Modelling, Total Lagrangian formalism for SPH,
  15. (2005). Santorini Greek Islands,
  16. (1995). Smoothed particle hydrodynamics stability analysis. doi
  17. (2005). Space Agency /ESOC,
  18. (2006). SPH in a total Lagrangian formalism,
  19. (2006). SPH in a Total Lagrangian formalism, Computer Modeling in Engineering and Science,
  20. (1977). Stable particle methods, total Lagrangian SPK impact, corrected SPH. Utroductlex It is well known that 1he convertional. SPH method initially proposed by L Lucy
  21. (2000). The recent improvements of the conventional SPH niethod which have given the method first order consistency,
  22. (2000). The Total Lagrangian framework is combined with the mixed correctionwhich ensures linear completeness and compliance with the patch test. R Vigrýevicý 1. CampbelL L Libersky
  23. (1996). these corrections are introduced into ihs Total Lagrangian SPH and compared to the convertional SPH and to a number of selected corrected variants, 0. Johnsot%
  24. Time History Nodes Initial Velocities 1 O.

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.