Skip to main content
Article thumbnail
Location of Repository

Water ingestion effects on gas turbine engine performance

By Theoklis Nikolaidis

Abstract

Although gas turbine engines are designed to use dry air as the working fluid, the great demand over the last decades for air travel at several altitudes and speeds has increased aircraft’s exposure to inclement weather conditions. Although, they are required to perform safely under the effect of various meteorological phenomena, in which air entering the engine contains water, several incidents have been reported to the aviation authorities about power loss during flight at inclement weather. It was understood that the rain ingestion into a gas turbine engine influences the performance of the engine and particular the compressor and the combustor. The effects of water ingestion on gas turbine engines are aerodynamic, thermodynamic and mechanical. These effects occur simultaneously and affect each other. Considering the above effects and the fact that they are timedependent, there are few gas turbine performance simulation tools, which take into account the water ingestion phenomenon. This study is a new research of investigating theoretically the water ingestion effects on a gas turbine performance. It focuses on the aerodynamic and mechanical effects of the phenomenon on the compressor and the combustor. The application of Computational Fluid Dynamics (CFD) is the basic methodology to examine the details of the flow in an axial compressor and how it is affected by the presence of water. The calculations of water film thickness, which is formed on the rotor blade, its motion (direction and speed) and the extra torque demand, are provided by a code created by the author using FORTRAN programming language. Considering the change in blade’s profile and the wavy characteristics of the liquid film, the compressor’s performance deterioration is calculated. The compressor and combustor’s deterioration data are imported to a gas turbine simulation code, which is upgraded to calculate overall engine’s performance deterioration. The results show a considerable alteration in engine’s performance parameters and arrive at the same conclusions with the relevant experimental observations

Topics: Simulation, Adverse Weather, Film, Deterioration, Rain
Publisher: Cranfield University
Year: 2008
OAI identifier: oai:dspace.lib.cranfield.ac.uk:1826/3516
Provided by: Cranfield CERES

Suggested articles

Citations

  1. (1995). Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. doi
  2. Siemens V94.3A compressor data were available from Noel (2003) in MS Excel spreadsheet format. Compressor’s basic characteristics are shown in table A-1, while its geometric characteristics are illustrated in table

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.