Arc-based sensing in narrow groove pipe welding

Abstract

Big gains in productivity are found in tandem and dual tandem pipeline welding but require highly skilled operators who have to control the position of the torch very accurately for long periods. This leads to high demands on the skills and stamina of the operators of mechanised pipeline welding systems. There is a very strong motivation to fully automate the welding process in order to reduce the required skills and to improve consistency. This project focuses on the use of through-the-arc sensing for seam following and contact-tip-workpiecedistance (CTWD) control. A review of literature reveals very little development work on arc sensing for Pulsed Gas Metal Arc Welding (GMAW-P) in narrow grooves. GMAW-P is often used to achieve optimum properties in weld quality and fusion characteristics and also positional welding capability, all of which are important factors for pipeline welding. The use of through-the-arc sensing for narrow groove pipe welding applications poses specific challenges due to the steep groove sidewalls and the use of short arc lengths, producing very different behaviour compared to V-groove arc sensing techniques. Tandem welding is also quite different from single wire techniques with both wires working in close proximity producing mutual interferences in arc signals. An investigation was conducted in order to assess GMAW-P arc signals and it was found that improved consistency, higher sensitivity and less noise was present in voltages in the peak current period (peak voltages) used for torch position control. As a result of this investigation, a CTWD and cross-seam control system was developed and tested for single and tandem GMAW-P, using a 5º narrow groove. The test results have revealed accuracies for both controls of better than 0.2 mm. CTWD control was developed by following the existent welding procedure voltage average and cross-seam control by peak voltage comparison between maximum torch excursions. Experiments were also performed to evaluate the influence of torch oscillation frequency on arc voltage behaviour and sensitivity, along with weld bead characteristics and fusion profiles. The resultant arc signal sensitivity was consistent with the results found in the literature for conventional GMAW. For GMAW-P, although no data was available from the literature for comparison, the results have shown no increase in sensitivity with the increase of oscillation frequency with the welding setup used. Bead profile analysis performed at different sidewall proximities indicated that optimum wire to sidewall proximities can be found between 0 mm and +0.2 mm, measured from the outer edge of the wire to the sidewall corner. Accurate control is required since +1 mm proximity produced poor sidewall fusion and no signal differentiation for control recognition of groove width. This work showed that negative proximities or wire proximity beyond the sidewall produce wire burn back and hence very long arc lengths, resulting in poor depths of penetration and shallower beads, with major undercut defects. In addition, this work has also shown the importance of torch oscillation width control, in order to produce accurate cross-seam control. A method is proposed to achieve torch oscillation width control by a continuous peak voltage comparison between centre and sidewall torch positions, using the optimum values of wire to sidewall proximity found and the resultant peak voltage value. This control will also provide a clear indication of actual groove width. Clearly this data can also be used to implement a system which adapts welding parameters to groove width.BP Exploration and Pipeline Research Council International (PRCI

Similar works

This paper was published in Cranfield CERES.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.