Skip to main content
Article thumbnail
Location of Repository

Control of plane poiseuille flow: a theoretical and computational investigation

By John McKernan


Control of the transition of laminar flow to turbulence would result in lower drag and reduced energy consumption in many engineering applications. A spectral state-space model of linearised plane Poiseuille flow with wall transpiration ac¬tuation and wall shear measurements is developed from the Navier-Stokes and continuity equations, and optimal controllers are synthesized and assessed in sim¬ulations of the flow. The polynomial-form collocation model with control by rate of change of wall-normal velocity is shown to be consistent with previous interpo¬lating models with control by wall-normal velocity. Previous methods of applying the Dirichlet and Neumann boundary conditions to Chebyshev series are shown to be not strictly valid. A partly novel method provides the best numerical behaviour after preconditioning. Two test cases representing the earliest stages of the transition are consid¬ered, and linear quadratic regulators (LQR) and estimators (LQE) are synthesized. Finer discretisation is required for convergence of estimators. A novel estimator covariance weighting improves estimator transient convergence. Initial conditions which generate the highest subsequent transient energy are calculated. Non-linear open- and closed-loop simulations, using an independently derived finite-volume Navier-Stokes solver modified to work in terms of perturbations, agree with linear simulations for small perturbations. Although the transpiration considered is zero net mass flow, large amounts of fluid are required locally. At larger perturbations the flow saturates. State feedback controllers continue to stabilise the flow, but estimators may overshoot and occasionally output feedback destabilises the flow. Actuation by simultaneous wall-normal and tangential transpiration is derived. There are indications that control via tangential actuation produces lower highest transient energy, although requiring larger control effort. State feedback controllers are also synthesized which minimise upper bounds on the highest transient energy and control effort. The performance of these controllers is similar to that of the optimal controllers

Topics: Optimal control, Channel flow, Navier-Stokes equations, Spectral methods, State-space model, Finite-volume discretisation model, Linear matrix inequality
Publisher: Cranfield University
Year: 2006
OAI identifier:
Provided by: Cranfield CERES

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.