Article thumbnail
Location of Repository

REPRESENTING AND LEARNING DISTRIBUTIONS WITH THE AID OF A NEURAL-NETWORK

By 

Abstract

This paper describes a method by which a neural network learns to fit a distribution to sample data. The neural network may be used to replace the input distributions required in a simulation or mathematical model and it allows random variates to be generated for subsequent use in the model. Results are given for several data sets which indicate the method is robust and can represent different families of continuous distributions. The neural network is a three-layer feed-forward network of size (1-3-3-1). This paper suggests that the method is an alternative approach to the problem of selection of suitable continuous distributions and random variate generation techniques for use in simulation and mathematical models

Topics: HD28
Publisher: STOCKTON PRESS
OAI identifier: oai:wrap.warwick.ac.uk:21043
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.