Skip to main content
Article thumbnail
Location of Repository

Test Data Generation: Two Evolutionary Approaches to Mutation Testing

By Peter S May
Topics: QA76
OAI identifier: oai:kar.kent.ac.uk:24023

Suggested articles

Citations

  1. (1976). A complexity measure. doi
  2. (1991). A Fortran language system for mutationbased software testing. doi
  3. (2001). A genetic algorithm ¯tness function for mutation testing. Internet - http://www.dcs.kcl.ac.uk/projects/seminal/pastmeeting /(007)(12,13)-5-2001/bottaci.ps,
  4. (2001). A genetic algorithm fitness function for mutation testing. Internet - http://www.dcs.kcl.ac.uk/projects/seminal/pastmeeting /(007)(12,13)-5-2001/bottaci.ps,
  5. (1994). A practical system for mutation testing: Help for the common programmer. doi
  6. (1998). A strategy for using genetic algorithms to automate branch and fault-based testing. doi
  7. (2001). A technique for mutation of Java objects. doi
  8. (1992). Adaptation in Natural and Arti¯cial Systems.
  9. (1992). Adaptation in Natural and Artificial Systems. doi
  10. (1998). An automated framework for structural test-data generation. doi
  11. (2003). An automated test data generation tool using tabu search. doi
  12. (1993). An empirical comparison of mutation and data °ow based test adequacy criteria. doi
  13. (1993). An empirical comparison of mutation and data flow based test adequacy criteria. doi
  14. (1994). An empirical evaluation of weak mutation.
  15. (1996). An experimental determination of su±cient mutant operators. doi
  16. (1996). An experimental determination of sufficient mutant operators. doi
  17. (1993). An experimental evaluation of selective mutation.
  18. (2004). An experimental mutation system for Java. doi
  19. (1985). An integrated system for program testing using weak mutation and data °ow analysis.
  20. (1985). An integrated system for program testing using weak mutation and data flow analysis.
  21. (1999). An Introduction to Genetic Algorithms. doi
  22. (1999). An Introduction to Neural Networks. doi
  23. (2003). ANTLR parser generator. Internet - doi
  24. (2002). Arti¯cial Immune Systems: A New Computational Intelligence Approach.
  25. (1998). Automated software test data generation for complex programs. doi
  26. (1990). Automated software test data generation. doi
  27. (2000). Automated test-data generation for exception conditions. Software - Practice and Experience, doi
  28. (2002). Automatic test cases optimization using a bacteriological adaptation model: Application to .net components. doi
  29. (2001). Automatic test data generation for path testing using GAs. Information Sciences: doi
  30. (1988). Automatic Test Data Generation. doi
  31. (1997). Automatically detecting equivalent mutants and infeasible paths. doi
  32. (2000). Class mutation: Mutation testing for object-oriented programs. Internet - http://wwwusers.cs.york.ac.uk/ jac/papers/ClassMutation.pdf,
  33. (1993). Comparing the fault detection effectiveness of mutation and data °ow testing: An empirical study. doi
  34. (1993). Comparing the fault detection effectiveness of mutation and data flow testing: An empirical study. doi
  35. (1991). Compiler-Integrated Software Testing. doi
  36. (1997). Computer immunology. doi
  37. (1991). Constraint-based automatic test data generation. doi
  38. (1993). death and the immune system. doi
  39. (2005). Evolutionary testing of state-based programs. doi
  40. (2005). Exploiting Immunological Metaphors in the Development of Serial, Parallel, and Distributed Learning Algorithms.
  41. (1994). Folding the main chain of small proteins with the genetic algorithm. doi
  42. (2003). Formal speci¯cation and documentation using z: A case study approach. Internet - http://www.jpbowen.com/pub/zbook.pdf,
  43. (2003). Formal specification and documentation using z: A case study approach. Internet - http://www.jpbowen.com/pub/zbook.pdf,
  44. (2005). Franck Fleurey, Jean-Marc Jezequel, and Yves Le Traon. Automatic test case optimization: A bacteriologic algorithm. doi
  45. (1988). From weak to strong, dead or alive? an analysis of some mutation testing issues. doi
  46. (2001). Generating software test data by evolution. doi
  47. (1993). Genetic algorithms for protein folding simulations. doi
  48. (1999). Genetic algorithms for the travelling salesman problem: A review of representations and operators.
  49. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. doi
  50. (1998). Genetic programming. In doi
  51. (1979). Heuristics for determining equivalence of program mutations.
  52. (1998). High performance testing on SIMD machines. doi
  53. (1993). High-performance mutation testing. doi
  54. Hints on test data selection: Help for the practicing programmer. doi
  55. (1991). How strong is weak mutation?
  56. (1993). How the immune system develops. doi
  57. (1993). How the immune system recognizes invaders. doi
  58. (1993). How the immune system recognizes the body. doi
  59. Hybridizing evolutionary testing with the chaining approach. doi
  60. (1997). Immunology for physicists. doi
  61. (2002). Improving evolutionary testing by °ag removal. doi
  62. (2002). Improving evolutionary testing by flag removal. doi
  63. (2002). Instrumenting programs with °ag variables for test data search by genetic algorithm.
  64. (2002). Instrumenting programs with flag variables for test data search by genetic algorithm.
  65. (2002). Inter-class mutation operators for Java. doi
  66. (2005). Internet -http://en.wikipedia.org/wiki/Jean-Baptiste Lamarck. doi
  67. (1992). Investigations of the software testing coupling effect. doi
  68. Java J2SE 5.0. Internet - doi
  69. (2005). Mendelian inheritance. Internet -http://en.wikipedia.org/wiki/Mendelian inheritance.
  70. (2004). Mothra mutation testing tool. Internet -http://www.ise.gmu.edu/faculty/ofut/rsrch/mut.html. Accessed:
  71. (2004). Mujava mutation system for java programs. Internet - http://www.ise.gmu.edu/ ofut/mujava/. Accessed:
  72. (2005). Mujava: An automated class mutation system. doi
  73. (2005). Museum. The Jenner Museum. Website -http://www.jennermuseum.com/.
  74. (2000). Mutation 2000: Uniting the Orthogonal. doi
  75. (1980). Mutation Analysis of Program Test Data.
  76. (1993). Mutation analysis using mutant schemata. doi
  77. (1992). Mutation testing of software using a MIMD computer.
  78. (2003). Mutation testing: An arti¯cial immune system approach. UK-Softest: UK Software Testing Workshop, doi
  79. (2003). Mutation testing: An artificial immune system approach. UK-Softest: UK Software Testing Workshop, doi
  80. (1991). O®utt. A Fortran language system for mutationbased software testing.
  81. (1994). O®utt. A practical system for mutation testing: Help for the common programmer. doi
  82. (1988). O®utt. Automatic Test Data Generation.
  83. (2002). O®utt. Inter-class mutation operators for Java. doi
  84. (1992). O®utt. Investigations of the software testing coupling e®ect.
  85. (2004). O®utt. Mothra mutation testing tool. Internet -http://www.ise.gmu.edu/faculty/ofut/rsrch/mut.html. Accessed:
  86. (1993). On Mutation and Data Flow.
  87. (1980). On Mutation.
  88. (2005). On the origin of species by means of natural selection. doi
  89. (2003). Organization. In°uenza fact sheet. Internet,
  90. (1991). Performance, e®ectiveness, and reliability issues in software testing. doi
  91. (1991). Performance, effectiveness, and reliability issues in software testing. doi
  92. Philosophie zoologique, ou Exposition des considrations relatives l'histoire naturelle des animaux. doi
  93. Philosophie zoologique, ou Exposition des considrations relatives l’histoire naturelle des animaux. doi
  94. (1996). Proteum - a tool for the assessment of test adequacy for C programs: User's guide.
  95. (1981). Pseudo-oracles for non-testable programs. doi
  96. (1994). Self-nonself discrimination in a computer. doi
  97. (1990). Software Testing Techniques. doi
  98. (1994). Software Testing. doi
  99. (2003). Software vaccination: An arti¯cial immune system approach. doi
  100. (2003). Software vaccination: An artificial immune system approach. doi
  101. (1999). Statistics for the Terri¯ed. PrenticeHall, Saddle River,
  102. (1999). Statistics for the Terrified. PrenticeHall, Saddle River, doi
  103. (1999). Swarm Intelligence: From Natural to Arti¯cial Systems. doi
  104. (1999). Swarm Intelligence: From Natural to Artificial Systems. doi
  105. (2001). Systematically deriving partial oracles for testing concurrent programs. doi
  106. (2004). Test oracles using statistical methods.
  107. (1999). Test-data generation using genetic algorithms. doi
  108. (1995). Testing can be formal, too. doi
  109. (2000). Testing from Structured Algebraic Speci¯cations: The Oracle Problem.
  110. (2000). Testing from Structured Algebraic Specifications: The Oracle Problem. doi
  111. (2000). Testing Object-Oriented Systems: Models, Patterns, and Tools.
  112. (1977). Testing programs with the aid of a compiler. doi
  113. (1996). The chaining approach for software test data generation. doi
  114. (2000). The clonal selection algorithm with engineering applications. doi
  115. (1959). The Clonal Selection Theory of Acquired Immunity. doi
  116. (1994). The dynamic domain reduction procedure for test data generation: Design and algorithms. doi
  117. The history of smallpox.
  118. (2005). The history of vaccines and immunization: Familiar patterns, new challenges. doi
  119. (2003). The state problem for evolutionary testing. doi
  120. (1985). The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. doi
  121. (1990). The weak mutation hypothesis. doi
  122. (1979). Theoretical studies of clonal selection: Minimal antibody repertoire size and reliability of self-nonself discrimination. doi
  123. (1974). Towards a network theory of the immune system. Annals of Immunology,
  124. (2000). Translation of philosophie zoologique
  125. (2002). Traon. Genes and bacteria for automatic test cases optimization in the .net environment. doi
  126. Two notions of correctness and their relation to testing. doi
  127. (2005). Two ways to grow tissue for arti¯cial immune systems. doi
  128. (2005). Two ways to grow tissue for artificial immune systems. doi
  129. (1994). Using compiler optimization techniques to detect equivalent mutants. doi
  130. (1999). Using program slicing to assist in the detection of equivalent mutants. doi
  131. (1982). Weak mutation testing and completeness of test sets. doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.