Correlation between defect density and current leakage in InAs/GaAs quantum dot-in-well structures

Abstract

We present a study of InAs/GaAs quantum dot-in-well (DWELL) material using transmission electron microscopy and leakage current-voltage measurements. The spacer layers between the DWELL layers have a variety of annealing and growth temperatures. We show that there is a strong correlation between spacer layer, annealing temperature, defect density, and these leakage currents, with the most defective sample having 30 times more defects and a leakage current several orders of magnitude above that of the least defective. Cross section transmission electron microscope (TEM) shows that surface roughness above defective dots is responsible for the high defect densities. However, even in the best sample the reverse bias leakage current is several orders of magnitude above that typically seen in quantum well materials and a measurable density of defective dots are observed in planar view TEM. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3168492

Similar works

Full text

thumbnail-image

Warwick Research Archives Portal Repository

redirect
Last time updated on 03/04/2012

This paper was published in Warwick Research Archives Portal Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.