Article thumbnail
Location of Repository

Tissue classification based on 3D local intensity structures for volume rendering

By Y. Sato, C.-F. Westin, Abhir Bhalerao, S. Nakajima, N. Shiraga, S. Tamura and R. Kikinis


This paper describes a novel approach to tissue classification using three-dimensional (3D) derivative features in the volume rendering pipeline. In conventional tissue classification for a scalar volume, tissues of interest are characterized by an opacity transfer function defined as a one-dimensional (1D) function of the original volume intensity. To overcome the limitations inherent in conventional 1D opacity functions, we propose a tissue classification method that employs a multidimensional opacity function, which is a function of the 3D derivative features calculated from a scalar volume as well as the volume intensity. Tissues of interest are characterized by explicitly defined classification rules based on 3D filter responses highlighting local structures, such as edge, sheet, line, and blob. which typically correspond to tissue boundaries, cortices, vessels, and nodules, respectively, in medical volume data. The 3D local structure filters are formulated using the gradient vector and Hessian matrix of the volume intensity function combined with isotropic Gaussian blurring. These filter responses and the original intensity define a multidimensional feature space in which multichannel tissue classification strategies are designed. The usefulness of the proposed method is demonstrated by comparisons with conventional single-channel classification using both synthesized data and clinical data acquired with CT (computed tomography) and MRI (magnetic resonance imaging) scanners. The improvement in image quality obtained using multichannel classification is confirmed by evaluating the contrast and contrast-to-noise ratio in the resultant volume-rendered images with variable opacity values

Topics: QA76
Publisher: Institute of Electrical and Electronics Engineers
Year: 2002
OAI identifier:
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.