Article thumbnail
Location of Repository

Phase transitions for countable Markov shifts



We study the analyticity of the topological pressure for some one-parameter families of potentials on countable Markov shifts. We relate the non-analyticity of the pressure to changes in the recurrence properties of the system. We give sufficient conditions for such changes to exist and not to exist. We apply these results to the Manneville-Pomeau map, and use them to construct examples with different critical behavior

Topics: QC
OAI identifier:
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.