Article thumbnail
Location of Repository

Detailed structure and dynamics in particle-in-cell simulations of the lunar wake

By 

Abstract

The solar wind plasma from the Sun interacts with the Moon, generating a wake structure behind it, since the Moon is to a good approximation an insulator, has no intrinsic magnetic field and a very thin atmosphere. The lunar wake in simplified geometry has been simulated via a 1 1/2 D electromagnetic particle-in-cell code, with high resolution in order to resolve the full phase space dynamics of both electrons and ions. The simulation begins immediately downstream of the moon, before the solar wind has infilled the wake region, then evolves in the solar wind rest frame. An ambipolar electric field and a potential well are generated by the electrons, which subsequently create a counter-streaming beam distribution, causing a two-stream instability which confines the electrons. This also creates a number of electron phase space holes. Ion beams are accelerated into the wake by the ambipolar electric field, generating a two-stream distribution with phase space mixing that is strongly influenced by the potentials created by the electron two-stream instability. The simulations compare favorably with WIND observations. (C) 2001 American Institute of Physics

Topics: QC
Publisher: AMER INST PHYSICS
OAI identifier: oai:wrap.warwick.ac.uk:11741
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.