Skip to main content
Article thumbnail
Location of Repository

Video Indexing and Retrieval in Compressed Domain Using Fuzzy-Categorization.

By H. Fang, Rami S.R. Qahwaji and Jianmin Jiang

Abstract

NoThere has been an increased interest in video indexing and retrieval in recent years. In this work, indexing and retrieval system of the visual contents is based on feature extracted from the compressed domain. Direct possessing of the compressed domain spares the decoding time, which is extremely important when indexing large number of multimedia archives. A fuzzy-categorizing structure is designed in this paper to improve the retrieval performance. In our experiment, a database that consists of basketball videos has been constructed for our study. This database includes three categories: full-court match, penalty and close-up. First, spatial and temporal feature extraction is applied to train the fuzzy membership functions using the minimum entropy optimal algorithm. Then, the max composition operation is used to generate a new fuzzy feature to represent the content of the shots. Finally, the fuzzy-based representation becomes the indexing feature for the content-based video retrieval system. The experimental results show that the proposal algorithm is quite promising for semantic-based video retrieval

Topics: Video indexing and retrieval, Fuzzy-Categorization
Year: 2006
DOI identifier: 10.1007/11919629_24
OAI identifier: oai:bradscholars.brad.ac.uk:10454/3888
Provided by: Bradford Scholars
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://hdl.handle.net/10454/38... (external link)
  • http://dx.doi.org/10.1007/1191... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.