Article thumbnail
Location of Repository

Subversion of host defense mechanisms by adenoviruses



Adenoviruses (Ads) cause acute and persistent infections. Alike the much more complex herpesviruses, Ads encode numerous immunomodulatory functions. About a third of the viral genome is devoted to counteract both the innate and the adaptive antiviral immune response. Immediately upon infection, E1A blocks interferon-induced gene expression and the VA-RNA inhibits interferon-induced PKR activity. At the same time, E1A reprograms the cell for DNA synthesis and induces the intrinsic cellular apoptosis program that is interrupted by E1B/19K and E1B/55K proteins, the latter inhibits p53-mediated apoptosis. Most other viral stealth functions are encoded by a separate transcription units, E3. Several E3 products prevent death receptor-mediated apoptosis. E3/14.7K seems to interfere with the cytolytic and pro-inflammatory activities of TNF while E3/10.4K and 14.5K proteins remove Fas and TRAIL receptors from the cell surface by inducing their degradation in lysosomes. These and other functions that may afect granule-mediated cell death might drastically limit lysis by NK cells and cytotoxic T cells (CTL). Moreover, Ads interfere with recognition of infected cell by CTL. The paradigmatic E3/19K protein subverts antigen presentation by MHC class I molecules by inhibiting their transport to the cell surface. In concert, these viral countermeasures ensure prolonged survival in the infected host and, as a consequence, facilitate transmission. Elucidating the molecular mechanisms of Ad-mediated immune evasion has stimulated corresponding research on other viruses. This knowledge will also be instrumental for designing better vectors for gene therapy and vaccination, and may lead to a more rational treatment of life-threatening Ad infections, e.g. in transplantation patients

Topics: QR180, QR
OAI identifier:
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.