Location of Repository

The invariants of the third symmetric power representation of SL_2(F_p)

By R. James Shank and Ashley Hobson


For a prime p>3, we compute a finite generating set for the\ud SL_2(F_p)-invariants of the third symmetric power representation. The proof relies on the construction of an infinite SAGBI basis and uses the Hilbert series calculation of Hughes and Kemper.\u

Topics: QA150
Year: 2011
OAI identifier: oai:kar.kent.ac.uk:24902

Suggested articles



  1. (1989). A completion procedure for computing a canonical basis of a k-subalgebra, doi
  2. (1998). Bases for Rings of Formal Modular Seminvariants, doi
  3. (2002). Computing modular invariants of p-groups, doi
  4. (1996). Gr¨ obner bases and Convex Polytopes,
  5. (1996). Gro¨bner bases and Convex Polytopes,
  6. (2002). Invariant Theory of Finite Groups, doi
  7. (1986). Local Representation Theory, doi
  8. (1994). Loustaunau An Introduction to Gr¨ obner Bases,
  9. (1994). Loustaunau An Introduction to Gro¨bner Bases,
  10. (1913). On Invariants and the Theory of Numbers, The Madison Colloquium
  11. (1999). On the Depth of the Invariants of the Symmetric Power Representations of SL2(Fp), doi
  12. (2009). On the invariants of the third symmetric power representation of SL2(Fp), PhD thesis,
  13. (1993). Polynomial Invariants of Finite Groups, doi
  14. (1990). Subalgebra bases, doi
  15. (2001). Symmetric Powers of Modular Representations for Groups with a Sylow Subgroup of Prime Order, doi
  16. (1997). The Magma algebra system I: the user language, doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.