Article thumbnail
Location of Repository

Efficient high-order rational integration and deferred correction with equispaced data

By Stefan Guettel and Georges Klein


Stable high-order linear interpolation schemes are well suited for the accurate approximation of antiderivatives and the construction of efficient quadrature rules. In this paper we utilize for this purpose the family of linear barycentric rational interpolants by Floater and Hormann, which are particularly useful for interpolation with equispaced nodes. We analyze the convergence of integrals of these interpolants to those of analytic functions as well as functions with a finite number of continuous derivatives. As a by-product, our convergence analysis leads to an extrapolation scheme for rational quadrature at equispaced nodes. Furthermore, as a main application of our analysis, we present and investigate a new iterated deferred correction method for the solution of initial value problems, which allows to work efficiently even with large numbers of equispaced data. This so-called rational deferred correction (RDC) method turns out to be highly competitive with other methods relying on more involved implementations or non-equispaced node distributions. Extensive numerical experiments are carried out, comparing the RDC method to the well established spectral deferred correction (SDC) method by Dutt, Greengard and Rokhlin

Topics: Approximations and expansions, Numerical analysis
Publisher: Unspecified
Year: 2013
OAI identifier:

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.