Skip to main content
Article thumbnail
Location of Repository

Symbolic Analysis for Boundary Problems: From Rewriting to Parametrized Groebner Bases

By Markus Rosenkranz, Georg Regensburger, Loredana Tec and Bruno Buchberger

Abstract

We review our algebraic framework for linear boundary problems (concentrating on ordinary differential equations). Its starting point is an appropriate algebraization of the domain of functions, which we have named integro-differential algebras. The algebraic treatment of boundary problems brings up two new algebraic structures whose symbolic representation and computational realization is based on canonical forms in certain commutative and noncommutative polynomial domains. The first of these, the ring of integro-differential operators, is used for both stating and solving linear boundary problems. The other structure, called integro-differential polynomials, is the key tool for describing extensions of integrodifferential algebras. We use the canonical simplifier for integro-differential polynomials for generating an automated proof establishing a canonical simplifier for integro-differential operators. Our approach is fully implemented in the THEOREMA system; some code fragments and sample computations are included

Topics: QA150, QA372, QA76
Publisher: Springer
Year: 2012
OAI identifier: oai:kar.kent.ac.uk:26236

Suggested articles

Citations

  1. (1984). A Critical-Pair/Completion Algorithm for Finitely Generated Ideals doi
  2. (1989). A factorization algorithm for linear ordinary differential equations. In: doi
  3. (1987). A generalization of reduction rings. doi
  4. (2010). A Maple package for integro-differential operators and boundary problems. doi
  5. (2005). A new symbolic method for solving linear two-point boundary value problems on the level of operators. doi
  6. (1992). A REDUCE program for the integration of differential polynomials. doi
  7. (2009). A skew polynomial approach to integrodifferential operators. doi
  8. (2003). A.: Algorithmic Methods in Non-Commutative Algebra: Applications to Quantum Groups. doi
  9. (1977). A.M.: n-th order ordinary differential systems under Stieltjes boundary conditions. doi
  10. (1974). A.M.: Ordinary differential operators under Stieltjes boundary conditions. doi
  11. (1974). A.M.: Ordinary differential operators under Stieltjesboundary conditions. doi
  12. (1998). Algebra I. Chapters 1–3. Elements of Mathematics (Berlin). doi
  13. (1973). Algebra of polynomials, doi
  14. (1983). Algebraic simplification. doi
  15. (2009). An algebraic foundation for factoring linear boundary problems. doi
  16. (2010). An algebraic operator approach to the analysis of Gerber-Shiu functions. doi
  17. (1996). An algorithm for complete enumeration of all factorizations of a linear ordinary differential operator. In: doi
  18. (1965). An algorithm for finding the bases elements of the residue class ring modulo a zero dimensional polynomial ideal (German). doi
  19. (1960). An analytic problem whose solution follows from a simple algebraic identity. doi
  20. (2010). An automated confluence proof for an infinite rewrite system parametrized over an integro-differential algebra. In: doi
  21. (1994). An introduction to commutative and noncommutative Gro¨bner bases. doi
  22. (1994). Anintroduction tocommutative and noncommutative Gr¨ obner bases.
  23. (2009). B.: A symbolic framework for operations on linear boundary problems. doi
  24. (1998). B.: Gro¨bner bases in non-commutative reduction rings. doi
  25. (2003). Basic algebra: Groups, Rings and Fields. doi
  26. (1969). Baxter algebras and combinatorial identities (I, doi
  27. (2000). Baxter algebras and differential algebras. In: Differential algebra and related topics doi
  28. (1999). Building up hierarchical mathematical domains using functors in Theorema. doi
  29. (2008). C.J.: An algorithm for finding symmetric Gr¨ obner bases in infinite dimensional rings. In: doi
  30. (2008). C.J.: An algorithm for finding symmetric Gro¨bner bases in infinite dimensional rings. In: doi
  31. (1995). Combinatorial and asymptotic methods in algebra. doi
  32. (1997). Computer algebra and differential equations: An overview. mathPAD 7,
  33. (2009). Computing representations for radicals of finitely generated differential ideals. doi
  34. (1973). Differential algebra and algebraic groups, doi
  35. (2003). E.:Notesontriangular setsandtriangulation-decomposition algorithmsii:Differential systems.
  36. (1970). Ein algorithmisches Kriterium f¨ ur die L¨ osbarkeit eines algebraischen Gleichungssystems. doi
  37. (1970). Ein algorithmisches Kriterium fu¨r die Lo¨sbarkeit eines algebraischen Gleichungssystems. doi
  38. (2009). Equivariant Gr¨ obner bases and the Gaussian two-factor model doi
  39. (2009). Equivariant Gro¨bner bases and the Gaussian two-factor model doi
  40. (2000). F.L.: Hurwitz series as formal functions. doi
  41. (2009). Finite Gr¨ obner bases in infinite dimensional polynomial rings and applications doi
  42. (2009). Finite Gro¨bner bases in infinite dimensional polynomial rings and applications doi
  43. (1976). Fractional powers of operators, and Hamiltonian systems. doi
  44. (1993). Free Lie algebras, doi
  45. (2003). Further algebra and applications. doi
  46. (1969). G.: Topological vector spaces (Volume I).
  47. (2003). G.F.: A survey on polynomials and polynomial and compatible functions. In: doi
  48. (1973). G.F.: A unified operator theory of generalized inverses. doi
  49. (1994). Gfun: a maple package for the manipulation of generating and holonomic functions in one variable. doi
  50. (1998). Gr¨ obner bases in non-commutative reduction rings. doi
  51. (1993). Gr¨ obner bases of modules over reduction rings. doi
  52. (1993). Gr¨ obner bases, doi
  53. (2008). Gr¨ obner basis implementations: Functionality check and comparison. Website
  54. (1979). Green’s functions and boundary value problems. doi
  55. (1993). Gro¨bner bases of modules over reduction rings. doi
  56. (1993). Gro¨bner bases, doi
  57. (2008). Gro¨bner basis implementations: Functionality check and comparison. Website
  58. (1986). Groebner bases for non-commutative polynomial rings. In: doi
  59. (2008). Groebner bases in Theorema using functors. doi
  60. (2001). Groebner rings and modules.
  61. (2003). Groebner Rings in Theorema: A Case Study in Functors and Categories.
  62. (2003). H.W.: Solving linear boundary value problems via non-commutative Gr¨ obner bases. doi
  63. (2003). H.W.: Solving linear boundary value problems via non-commutative Gro¨bner bases. doi
  64. (1987). History and basic features of the critical-pair/completion procedure. doi
  65. (2008). Integro-differential polynomials and operators. doi
  66. (1998). Introduction to Gr¨ obner bases. doi
  67. (1998). Introduction to Gro¨bner bases. doi
  68. (1998). Introduction to noncommutative Gr¨ obner bases theory. doi
  69. (2000). Introduction to Ring Theory. doi
  70. (2009). Letterplace ideals and non-commutative Gr¨ obner bases. doi
  71. (2009). Letterplace ideals and non-commutative Gro¨bner bases. doi
  72. (1958). Lie elements and an algebra associated with shuffles. doi
  73. (2003). M.F.: Galois theory of linear differential equations, doi
  74. (1973). N¨ obauer, W.: Algebra of polynomials, doi
  75. (2010). NCGB 4.0: A noncommutative Gr¨ obner basis package for mathematica
  76. (2010). NCGB 4.0: A noncommutative Gro¨bner basis package for mathematica
  77. (1998). Non-commutative elimination in Ore algebras proves multivariate identities. doi
  78. (1999). Non-commutative reduction rings. doi
  79. (2003). Notes on triangular sets and triangulation-decomposition algorithms ii: Differential systems. doi
  80. (2008). On differential Rota-Baxter algebras. doi
  81. (1997). On the ring of Hurwitz series. doi
  82. (1959). Operational calculus.
  83. (2006). PLURAL, a non-commutative extension of SINGULAR: past, present and future. In: doi
  84. (1969). Polynome ¨ uber universalen Algebren. doi
  85. (1969). Polynome u¨ber universalen Algebren. doi
  86. (1983). R.:Algebraic simplification. doi
  87. (1993). Real and functional analysis, doi
  88. (1995). Representation for the radical of a finitely generated differential ideal. In: doi
  89. (2003). Rings inTheorema: ACase Study inFunctors and Categories.
  90. (2008). Solving and factoring boundary problems for linear ordinary differential equations in differential algebras. doi
  91. (1998). String rewriting and Gr¨ obner bases—a general approach to monoid and group rings. In: Symbolic rewriting techniques, doi
  92. (1998). String rewriting and Gro¨bner bases—a general approach to monoid and group rings. In: Symbolic rewriting techniques, doi
  93. (1998). Ten mathematics problems I will never solve. doi
  94. (1998). Term rewriting and all that. doi
  95. (2009). The algebra of integro-differential operators on a polynomial algebra doi
  96. (1978). The diamond lemma for ring theory. doi
  97. (2003). The Green’s algebra: A polynomial approach to boundary value problems. Phd thesis,
  98. (2009). The group of automorphisms of the algebra of polynomial integro-differential operators doi
  99. (2006). Theorema: Towards computer-aided mathematical theory exploration. doi
  100. (1955). Theory of ordinary differential equations. doi
  101. (2002). third edn.
  102. (1969). Topological vector spaces (Volume I).
  103. (2011). W.Y.: Enumeration and generating functions of differential Rota-Baxter words. doi
  104. (2011). W.Y.: Enumeration and generating functions of Rota-Baxter words. doi
  105. (2009). What is. . .a Rota-Baxter algebra?
  106. (2009). What is...a Rota-Baxter algebra?

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.