Article thumbnail
Location of Repository

The influence of learning on the body multisegmental movement under task constraints

By 戴遠成 and Yuan-Cheng Dai


[[abstract]]The influence of learning on the body multisegmental movement under task constraints Graduate Student:Yuan-Cheng Dai Advisor:Yeou-Teh Liu Abstract A primary challege in the investigation of movement coordination is discovering how high-dimension body structures are compressed into low-dimensional movement coodination. N. A. Bernstein's formulation of the problems of degrees of freedom is often taken as the starting point.The main purpose of this study was to examine the process of learning multisegmental movement on the changes in the organization of mechanical and dynamical degrees of freedom. Eight female undergraduates were served as the participants of this investigation. None of participants had priod experience with the task.The participants were performed while holding the pole and standing to keep the platform in horizontal position for as long as possible .Each participant completed 6 days of practice; each practice day included 20 trials, each 30s in length. The kinematics of the movements was measured using a four-camera, Kinema Tracer 3D motion analysis system (Kissei Comtec) with a 17 anatomical landmark whole body set-up sampled at 60 Hz. Principal Component Analysis (PCA) was used to examine dimensional changes of movement system. The data were analyzed by repeated measure one-way ANOVA, t-test and cross correlation function at .05 significant level. The results are as follows: The results provide limited empirical evidence to support Bernstein’s (1967) freezing-releasing hypothesis .The multiple degrees of freedom of whole body segments are resolved into a few control DF. The multiple segments movement revealed that the number of controlled dimensions not only change across practice but also shifted their relative contribution. Finally, the present findings showed that the interaction of task, organismic, and evironmental constraints strongly influence the recruitment and suppesion of mechanical degrees of freedom also affects their spatiotemporal organization within the dynamical dgrees of freedom.Form dynamical systems perspective, complex patterns and dynamics might not require complex control structures. In addition, the coorination pattern depends on the different constraints, and search stratgies used to explore the dynamics of perceptual workplace. Key Words: task constraints, principal component analysis, dynamical systems

Topics: 工作限制;主成分分析;動力系統, task constraints;principal component analysis;dynamical systems, [[classification]]59
Year: 2011
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.