Article thumbnail
Location of Repository


By [[author]]劉俊庚, [[author]]Chun-Keng Liu, 劉俊庚 and Chun-Keng Liu


[[abstract]]In the past 20 years, studies of scientific conceptions held by students have been major concern of the scholars in science education. Many studies revealed that students have their own way of interpreting scientific phenomenon happened in daily life (Langley et al., 1997). And the way of their interpretations is often inconsistent with scientific concepts that they are expected to learn. Therefore, students are required to reorganize the structure of knowledge that has been learnt in classroom. In other words, learning is a process of conceptual change (Carey, 1985; Driver, 1989). Reviewing literatures in science education, it is found that there is lack of investigation of types and relationship of students’ misconception. Form the past, studies are the concepts covered in the materials (Krnel et al., 1998; Liu, 1998, 2000; Andersson, 1990), optics (Galili, 1996), chemical change (Andersson, 1986b), and particulate nature of matter, chemical bonding, balance and interpreting chemical equations, chemical equilibrium, the conceptions of acids and bases, and oxidize-reduction and electrochemistry etc (Garnett et al., 1995). Liao(2001) reviewed studies physical and chemical concepts completed in Taiwan, however this is not enough. How compile related types of the conceptions in literature is very important to researchers and teachers in science education. In this study, we reviewed articles published in the following journals: Journal of Research in Science Teaching (1972~2001), International Journal of Science Education (1988~2001), Science Education (1975~2001), Cognition and Instruction(1985~2001), Instructional Science (1989~2001), Chinese Journal of Science Education (1993~2001), Bulletin of National Taiwan Normal University (1991-2001), Bulletin of National Changhua University of Education (1991~2001), Bulletin of National Kaohsiung Normal University (1991~2001), Bulletin of National Taipei Teacher College (1988~2001), and Bulletin of Taipei Municipal Teacher College (1991~2001). In total, 194 articles were chosen for this study. The purposes of this study were to integrate studies about misconceptions found in literature from the following perspectives: (1) types of misconception; (2) teaching strategies for conceptual change; (3) comparisons between students’ conceptions and history of science. Moreover, in this study, the methods used are mainly meta-analysis and conceptual mapping. The results of this study were as follows: 1.The literature of the research that we collected with three main characteristics: (1) most of the research intended to search for relation, between students’ responses and age, in other words, the relation of students’ conception and the development of cognition; (2) students’ answers were interpreted and made classification by taking the scientific conception as reference; (3) most of the research were sought for inductivity, but they did not use any mode to explain students’ performance. 2.The analysis of the conceptual map showed that many students with misconception were simply mistake the incorrect relation between two concepts. In the analysis of conceptual map, it revealed that students’ misconception which can't integrated into the conceptual map. It suggested that the misconceptions is the mistake that phenomenon describe only, not the mistake of the procedural knowledge to belong to the students, namely, they can't include to the mistake of the conceptual construction. 3.The comparison between misconception and culture revealed that many misconceptions were found in different regions regardless the cultural effect. It speculates that the test of misconception in different topics, and the context of the problem caused the students to form different conceptions. 4.In the comparison between the development of science history and misconceptions of the students revealed only few similarities (for instance theories of the mechanics, the conception of the vision, light and color). From a holistic perspective, its similarity apparently does not show the consistency with our expectation. As for the development of science history, the viewpoint of scientist was systematic and with internal consistent, while students’ misconception lack of its consistency and logic, they were fragmental and context related, or were the difficulty of definitions and calculation. 5.In teaching strategies for conceptual change, the studies suggested that computer simulated and laboratory activities had effect size for 0.77 and 0.6 respectively. But the effectiveness of using analogies, cooperative learning, reading refutational text and traditional instruction for conceptual change were from low to middle degree. Moreover, relatively high percentages of studies (52.2%) did not use learning theories or modes to explain students’ misconceptions.

Topics: 迷思概念, 概念改變, 概念構圖, 後設分析, misconception, conceptual change, conceptual mapping, meta-analysis, [[classification]]54
Year: 2010
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.