Skip to main content
Article thumbnail
Location of Repository

Use of Learning Methods to Improve Kinematic Models

By Kintija Priedniece, Agris Ņikitenko, Aleksis Liekna and Guntis Kuļikovskis

Abstract

Kinematic model is the basic aspect in robot design and motion planning. Kinematic models are idealized, however there exist certain specific aspects of particular robot or environment, so that during navigation, the robot can significantly deviate from the planned trajectory. To increase the accuracy of motions, kinematic model can be improved and to achieve that the artificial intelligence methods can be used. In case of fixed base robots different approaches are used to train kinematics, at the same time, for the mobile base robots it proves to be a more complicated task. The reason is that a mobile robot can move unbound with respect to environment thus it is difficult to control the platform without deviation from the target position, which leads to inaccuracy in the position estimate. This paper presents the method meant for improvement of the accuracy of motion of differential drive platform. Genetic programming is used to obtain the wheel velocity function, from which the coefficient, which describes different factor influence on motion, is obtained. As a result, the kinematic model of a particular platform for a particular task is obtained. This method is effective because the developed kinematic model is more specific than the general one

Topics: genetic programming, learning kinematic, mobile platforms
Publisher: RTU
OAI identifier: oai:ortus.rtu.lv:15958
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.